
1

A Report on the Current Semantic Framework

of JML for Expression Evaluation and

Undefinedness
Amritam Sarcar

Department of Computer Science

University of Texas at El Paso

El Paso, TX - 79968, USA

asarcar@miners.utep.edu

Abstract

Java Modeling Language (JML) has been around for more than a decade. It is one of the most popular

BISL language tailored for Java. There are tools like Runtime Assertion Checker (RAC), Extended Static

Checker (ESC/Java) and Full Static Program Verifier (FSPV) to support JML. RAC and ESC are the

most popular ones since they have a low learning curve and are more catered towards developers [7].

RAC (which is also known as jmlc) is a compilation-based approach [10] wherein assertions are often

built-into executable code. The translation scheme of these assertions into programming constructs is the

focus of this paper. In JML2, the semantics for expression evaluation was local contextual-interpretation

[11] which has now been recently changed to strong-validity [8]. This paper discusses the motivation

behind the previous approach and the reasons behind JML adhering to the recent approach [17]. It

also looks into the current semantic framework for translation of expressions and compares this to the

previous approach. The author also compares and contrasts between the old, the current and the proposed

framework for Quantified Expression translation, and proposes the best translation scheme.

I. INTRODUCTION

The Java Modeling Language (JML) is a formal behavioral interface specification language that are not

only used for documentation purpose but also to specify the behaviors of program modules in Java. Unlike

Java, JML assertions are not limited by Java’s expressions; JML introduces a varied set of constructs

April 30, 2009 DRAFT

2

which includes in-line assertions, quantifiers, invariants, history constriants, model programs and many

more.

The nice thing about JML specification style is that they are written inside multi-line comments like

/*@ ... @*/ or single-line comments like //@ ... The only difference is that for a Java compiler, the

specifications are treated as comments, whereas for a JML compiler (like RAC) these comment-like

specifications are translated into executable code 1.

II. BACKGROUND

A. Expression Evaluation

JML is a superset of Java. However, unlike other specification languages, JML is built around Java.

That is, on top of the existing keywords and special symbols of Java, JML introduces some of their own.

The reason to introduce new language construct is to facilitate more stringent assertion checking.

B. Undefinedness

Runtime Assertion Checker is essentially a tool that evaluates each expression at runtime and check

with its corresponding assertion for violation. Since RAC evaulates at runtime, several situations may

arise during evaluation. During execution of any code, exceptions may be thrown. In such cases what

value is propagated to the client is a problem tha is associated with undefinedness.

C. Non-executable expressions

JML is not only an executable specification language but also is used as a documentation language. For

this purpose, JML introduced non-executable expressions like informal predicates (eg. (* . . . *)). When

a certain assertion cannot be formally defined, informal description is used. In general terms, informal

expressions are not executable.

III. RELATED APPROACHES

There has always been a constant effort to bridge the gap between logicians and software practicioners.

Work on correctness of programs started in late 1960’s. A common methodology - Leibniz’s law - a

deductive knowledge whereby new propositions, rules, axioms can be formulated was used a lot to infer

program correctness.

Leibniz : P = Q→ E[v := P] = E[v := Q]; (1)

1For further information, refer to [3], [17]

April 30, 2009 DRAFT

3

Equation 1 says that if the value of P equals to the value of Q, then any expression E which contains only

P as a variable (and, some constant) is equal to any other expression E containing Q as any other variable.

This expression is true only in the case where classical two-valued logic is followed. Conceptually, any

state at runtime can be either true or false with respect to some attributes under some conditions. However,

with the advent of new engineering constructs, different programming tools, it soon became evident that

this may not be true. A classical example is the division operation. It is defined as -

y 6= 0⇒ y/y = 1 (2)

because y is only defined in the range

<× <− {0} → < (3)

However for the case in equation 1, if the expression E is 1/x, then even though x = y = 0, can we

conclude 1/x = 1/y?

For the treatment of undefined expressions and partial functions, a third value ⊥ (to represent undefined

values), is assumed. In the works carried out by Bijlsma [2], the author proposes that an expression E is

to be evaluated to true or false only if no subexpression yields an undefined state. However, in [13], it

is shown that Bijlsma’s work is not compositional.

There were yet other approaches like using abortive approaches to avoid undefinedness. Jones and

Cheng [9] outlined two approaches. In the first approach, they proposed to transform partial functions to

total functions by defining the domains appropriately (like in equation 2 for division). The problem with

this approach is that it is not possible to implement this approach using a typed-programming language

(like C/C++, Java etc.). Since every domain is binded to a particular type at compile-time, changing this

domain at runtime and inferring any property is not possible. In the second approach, they proposed to

view every function as a mapping from one domain to the other. This approach at times may not also

be realisable.

Scott in his paper [18], suggests to assume all subexpressions (or, expressions) which evaluate to

undefine as false. However, the law of trichotomy does not hold in this case. For example,

y = 0 ∨ y < 0 ∨ y > 0,

since for y = x/0 for some x 6= 0, all the sub-expressions have undefined terms. And, as per Scott,

they evaluate to false which makes the entire expression to be false. However, since the LHS also

contains undefined terms, it also evaluates to false, yielding false = false. This approach therefore is not

implementable nor workable.

April 30, 2009 DRAFT

4

There were several proposals to extend the two-valued logic. Jones and Middelburg [15] developed

a new variation of logic LPF for partial functions. They proposed an operator to extend undefinedness

and two kinds of equality (weak and strong). However in [13], Gries and Schneider feel that Jones and

Middleburgs’ approach is far too complicated to be used in programming language.

More recently in [13], a new approach called Avoding undefinedness through underspecification was

proposed. In this approach, every operation and function are total operations. This approach is an extension

of [12]. For example, in this approach what would be the value of x/0? Since all operations are assumed

to be defined, the author leaves the value of x/0 as to be unspecified. This value can be any value in the

real-number line. This approach seems to be the preferred approach, whereby programmers can still use

two-valued logic. This approach is formal, rigorous and unambiguous.

There are currently some tools that support assertions in various programming languages. The Jass tool

[1] is a precompiler that supports assertions using the Design by Contract concepts and uses them in Java.

iContract [16] is the first tool that provided thorough support for explicit specifications for Java. It is a

source-code pre-processor that injects instrumented code in the source code itself. Eiffel [14] is another

such programming language which supports assertions in their language construct itself. Assertions play

a central part in the Eiffel design methodology which facilitates in building reliable OO software.

IV. CONTEXTUAL INTERPRETATION: JML2 APPROACH

In the previous semantic framework of RAC (JML2), the expression evaluation was based on contextual

interpretation [11]. In JML2, RAC uses a game-strategy for reporting assertion violation. The strategy

adopted is to predict whether the violation reported is to be positive or negative.

This approach is called a local contextual interpretation. It is local because if undefinedness occurs,

it is determined by the smallest boolean sub-expression. It is contextual because the value of the small

sub-expression is determined by the relative position of the expression.

A. Expression Evaluation

JML extends Javas’ expression by including quantifiers, set comprehension notations, and other speci-

fication and assertion constructs. The meaning of JML expressions are almost similar to Java expressions.

However, there are certain major semantic difference between them.

• Abrupt completion: In Java, an expressions can either complete normally or abruptly, by throwing

an exception. In Java, the value associated with this exception is not known, however it has an

assoiciated reason (i.e., by the throw clause). Since JML is an extension to [13], it transforms

April 30, 2009 DRAFT

5

underspecified functions by always associating an arbitary value to an undefined sub-expression (see

section IV-B).

• Evaluation order: Java has certain order-sensitive operators like the short-circuit operators such as

&& and ||. The right-hand side is only evaluated if any sub-expressions on the left-hand side does not

yield a conclusive boolean value. The interesting part is when one of the sub-expressions complete

abruptly, that is when there is a difference between JML and Java behavior. Table I shows that the

standard rules of logic are followed even in presence of undefinedness.

Example Value Explanation

x.length > 0 || true True or NullPointerException in Java True, if x!=null, else the exception is thrown

x.length > 0 || true Always True in JML Jf x==null then JML substitutes an arbitary value to x.length

which evaluates to either true or false; however the right-hand

side of the expression makes the whole expression true
TABLE I

JML VS JAVA EXPRESSION EVALUATION IN PRESENCE OF EXCEPTION

• Executability: In JML, not all expressions are executable. Some expressions for eg. the informal

descriptions and some quantifiers are not executable.

B. Semantics for Undefinedness

The core of JML tools are built around the works of [13]. It is based on the classical two-valued

logic where every expression can either have true or false. However, the RAC tool which is essentially a

compiler that translates Java source code annotated with JML annotations into executable code. In JML

[17], undefinedness can also occur due to unexecutable constructs (like (* informal description *)). To

cope with this problem, JML extends the classical two-valued logic by introducing two different kind of

undefinedness.

C. Angelic and Demonic Exceptions

To adher to the two-valued logic, the developers of RAC decided to use two types of exceptions namely,

Angelic and Demonic Exceptions. Demonic exceptions are those where runtime exceptions occur and

is generally viewed as potential violation of assertion. Whereas, angelic expressions are not viewed as

error conditions for which assertion violation should be reported. For demonic exceptions, the goal is to

falsify the assertion under the rules of logic; for angelic exceptions, the goal is to make them true.

April 30, 2009 DRAFT

6

D. The Implementation Framework

To support the different kinds of exceptions, there should be well-defined translation rules in place.

Here, we discuss some of them in light of the semantic framework (More details can be found in [11]).

JML has several constructs like field, class, interface, methods, and expressions. As discussed earlier, the

formal specification written in JML annotation format is generally written abstractly without the worry

of any computational faults like exception, runtime errors. JML chooses the best optimal strategy that

would falsify the top-level assertion. The implementation framework and its associated translation rules

should detect as many assertion violation with no false positives. The JML top-level assertions can either

be associated with field, type declarations (concrete classes, interfaces, abstract classes, local classes,

annonymous and others), methods or expressions.

The interesting part of the translation rule (see Table III) is the try-catch block. The behavior of this

try-catch block is that during the translation of expression E, if the expression cannot be executed then

it is caught in the catch block. In this block, the value of the expression is assigned a boolean value !b.

The value of b signifies whether to falsify the top-level expression or not. This is to differentiate between

(*informal*) and !(*informal*) and other such variants.

E. Quantified Expressions

JML adds several new constructs like quantifiers. It contains several forms of them. An extensible

and maintenable framework is adopted in the JML2 approach which provides multiple techniques to

evaluate them. However, the most important evaluation strategy is to statically check for executability of

quantifiers. It uses pattern matching to decide whether an expression is executable or not. An expression

of the form (∀ Object x; x!=null; x.contains(new String())); is not executable since it is impossible to

generate all the instances of an Object type. (This is not even workable since Object is the super-class

of all other types). The general form of a quantifier is

(QuantifierV ; P ; Q);

F. Discussion

The simplest approach for undefinedness in the runtime assertion checking point-of-view, is propagating

to the user all exceptions thrown during evaluation. This approach is commonly practised in Java

programming language as well as in [16], [14] and [1]. JML does not adher to this scheme because

JML conforms to the standard rule of logic. Another reason, JML adopts this approach is because several

April 30, 2009 DRAFT

7

theorem provers like PVS uses two-valued logic with underspecifications. In fact, JML2 is the only

Design-By-Contract tool that implements underspecified functions in runtime assertion checking tools.

V. RAC THROUGH STRONG VALIDITY

The JML2 approach outlined above had several problems. They are discussed in the following sections.

A. Approximation of two-valued classical logic: Its shortcomings

Essentially JML2 approach approximated the classical two-valued logic with underspecification. How-

ever, in doing so, it gave birth to some anomalies. For example, let x and y be two array reference types

that are null, then RAC interprets x[0] == y[0] as false and also x[0] == y[1] as false. However classical

logic in theorem provers would evaluate the first expression to be as false and the latter as true. As per

the works of [4], RAC does not implement the assertions based on classical logic.

Another shortcoming of the contextual interpretation approach is the loss of referential transparency

[4]. Due to adhering to this approach, the implementation framework was also not optimised. In fact,

due to each expression being translated into sequence of statements, the resulting instrumented code was

so huge that there were cases [8] when the compiled code exceeded the maximum capacity, terminating

the entire process.

B. Motivation behind Strong Validity

The several problems resulting from the JML2 approach, lead the JML community to work collectively

for a better semantic framework. This was primarily lead by Chalins’ group which culminated in [6],

[5], [4] and [8]; all are possible improvements from the previous approach. Runtime Assertion Checking

tools are generally used by mainstream developers [5]. Thus, to cater to this need, the tools should be

designed to aid/supplement formal verification.

1) Assertions in Industry: The survey conducted by Chalins’group [5] showed that practitioners, soft-

ware engineers use assertions in their daily production code. The survey also shows how the practitioners

want their assertion violation to work. A sample response to a question is shown in Table II. For complete

results, check [5].

The survey result indicates that the industry is in favor of reporting of errors/exceptions when a partial

function is evaluated in RAC/ESC tools. Some of the findings from this survey are -

1) Classical Logic: Previously, many software engineers argued on the fact that adoption of two-valued

logic is adequate for program verification. However, this survey shows a different result. The laws

April 30, 2009 DRAFT

8

Question true false error others

nullReference > 0 || true 6% 5% 84% 4%

true || nullReference > 0 73% 1% 18% 7%

TABLE II

RESPONSES TO QUESTIONS IN A SURVEY

of classical two-valued logic is not applicable to programming languages. For example, 1/x == 1/x

should not be interpreted as true for x = 0. This is the approach adopted by mainstream developers,

because the programmer might have assumed that x would never be 0 in this context resulting to

a potential error.

2) Partial functions: It is common practise where if illegal arguments are supplied then exceptions

occur. To catch such exceptions guarded specifications should be used appropriately. Throwing of

exceptions help detect more errors.

3) Ignoring Exceptions: If exceptions are ignored then possible origin of error cannot be located.

4) Consistency: ESC tools are static checkers which check for any possible assertion violation at

compile-time. RAC tools are the ones that check for assertion violation at runtime. Both tools

should be consistent in their behavior.

C. Strong Validity in ESC/JAVA2

When the JML community agreed on the adoptation of strong validity [17], the first JML tool that

adopted this approach was the ESC/JAVA tool. With the adoptation of this approach, more assertion

violation was exposed. More than 50 errors were found with an increase of only 2% in processing time

[6]. Due to consistency between RAC and ESC tools, it was obvious that RAC tools would also be

re-implemented to conform strong validity.

D. JML Runtime Assertion Checker (RAC)

To conform to the new approach, the implementation framework was re-designed. In [8], Chalin and

Frederick created a new general expression translator. There was no more need for explicitly checking

sub-expressions (see Table III). At runtime, the expression is evaluated in a top-level try-catch block

that is used to catch two things: (a) JMLNonExecutableExceptions, and (b) all other exceptions. This

approach simplifies expression evaluation but also increases the effectiveness of assertion reporting. From

April 30, 2009 DRAFT

9

the performance point-of-view, the instrumented code is reduced by 70% and the compilation time by

8%.

E. Translating Quantified Expressions

Evaluation of Quantified expressions cannot be mechanically derived. The instrumented code is derived

using static analysis. The new approach reuses the existing quantifier evaluation rules while wrapping

them inside a local class scope. Unlike the previous approach, the local class approach embeds the

instrumented code in the assertion position itself. The relative advantage over the previous approach is

tabulated in Table IV.

VI. A NEW APPROACH TO QUANTIFIED EXPRESSION: DISCUSSION

Quantified expression is one of the advanced features of JML. Writing a specification in a real-world

scenario often makes use of several quantified expressions. Translating these quantified expressions into

executable java code is the work of Runtime Assertion Checker. Since usage of quantifiers in JML

specifications is common, there is a need to properly translate the quantified expressions into proper

readable code.

Due to several problems found in the previous two approaches to handle quantified expressions, the

author, at first compares the several alternative approaches and finally proposes one of the approach to

be the optimal one. A total of five approaches were compared against a number of criterias. A brief

explaination of the approaches follows.

A. Local-class Approach

This approach like in JML2 [8] [17] is an approach where the translated code is embedded within a

local class. For a detailed discussion see V-E.

B. Top-level Single-class Approach

This approach is a variation of the recent JML2 approach [8], where only a single class is created. The

nested quantifiers are translated inside the while loop. And, for multiple quantifiers different methods are

created viz. eval0(...), eval1(...) ... evalN(...) inside the same class. The only difference

between the Local-class approach and this is that in the former for each quantifier, there is one class. In

this case, for all quantifiers only one class is present.

April 30, 2009 DRAFT

10

Local-Contextual Strong Validity Inline Approach

t r y {
boolean r a c v 0 = f a l s e ;

/∗ t r a n s l a t i o n o f f i r s t

q u a n t i f i e r ∗ /

r a c v 0 = QE1 ;

i f (! r a c v 0) {
/∗ t r a n s l a t i o n o f o t h e r

q u a n t i f i e r s ∗ /

r a c v 0 &= QE1 ;

}
. . .

} catch (JMLNonExecutable

jmle0) {
r a c v 0 = t rue ;

} catch (E x c e p t i o n jmle1) {
r a c v 0 = t rue ;

}

t r y {
c l a s s r a c v { p u b l i c boolean e v a l (){
/∗ t r a n s l a t i o n o f Q u a n t i f i e r 1 ∗ /

/∗ i f Q has a n o t h e r q u a n t i f i e r ,

a n o t h e r l o c a l c l a s s i s c r e a t e d

h e r e ∗ /

}
re turn . . . ;

}}
r a c v r a c v E v a l = new r a c v () ;

v a r = /∗ t r a n s l a t i o n o f o t h e r

e x p r e s s i o n s ∗ / && r a c v E v a l . e v a l ()

&& . . . ;

} catch (JMLNonExecutable e x c e p t i o n){
. . . }

catch (Throwable v){
throw new J M L E v a u l a t i o n E r r o r (v) ; }

t r y {
racV = E x p r e s s i o n 1 &&

E x p r e s s i o n 2 ;

i f (racV) {
/∗ e v a l u a t e n e x t q u a n t i f i e d

E x p r e s s i o n . . . ∗ /

racV = /∗ some b o o l e a n v a l u e ∗ /

i f (racV) {
/∗ S i m i l a r l y f o r o t h e r

q u a n t i f i e r s we have t r y−
c a t c h b l o c k s ∗ /

}
}
. . .

} catch (JMLNonExecutable

e x c e p t i o n){ . . . }
catch (Throwable v){ . . . }

TABLE III

INSTRUMENTED WRAPPER CODE FOR THE THREE APPROACHES.

C. Method Approach

In this approach the translated code of quantified expressions is embedded inside separate methods.

No local classes are created. The same visitor classes are used for generation of instrumented code, only

this time the wrapping is done around seperate methods and not in classes.

D. Statement Approach

In this approach the translated code of quantified expressions is embedded at the statement level itself

and bounded by try-catch blocks. No local classes are created for this purpose. For the statement level,

two variations are proposed.

1) Greedy-Analysis Approach: In this approach, the quantified expression is evaluated first. The evalu-

ated value of every quantified expression is stored in a data-structure. During evaluation if undefinedness

occurs, then the exception is caught and is also stored. For this approach a seperate class/interface is

created which returns either a boolean value or an exception as required.

2) Inline Approach: In this approach, the quantified expression is evaluated in place. That is, for

every quantified expression, its corresponding instrumented code is generated in place. This simplifies

April 30, 2009 DRAFT

11

the quantified expression evaluation a lot. However, this requires a change in the expression evaluation

strategy to accomodate the inline expression evaluation.

VII. EVALUATION CRITERIA

Several evaluation metrics were taken into consideration for accessing the best framework to translate

quantified expressions into Java executable code (RAC code).

A. Readibility

The common JML tool a.k.a the JMLRac compiler has a -P option in which the translated code in

Java source code format is displayed. This is to facilitate programmers, JML developers and users to

check for correct implementation, and is also used for debugging purpose. Thus readibility plays a key

role while translating quantifiers. If the corresponding Java source code for the quantified expression is

distributed around, then it may hamper the natural flow of understanding by the reviewer.

B. Supports all features of quantifiers

The framework that would ultimately be chosen should be able to support all the features of quantified

expressions. The framework should support translation at every place where quantifiers can be used like

in class, method or inline specifications. Ideally all types of quantified expressions should be supported

by the frameowork. It should also be able to support nested quantified expressions (For example (∀ T1

e1; P1 ; (∃ T1 e1; P2 ; Q2));).

C. Supports expression translation in all scenarios

The previous section (VII-B) illustrates that expressions can be associated with classes, inlines or

method specifications. However, all these three specifications can occur in different scenarios. The

framework should be able to translate the code accordingly. Some of the scenarios where quantified

expressions can occur are, in interfaces, abstract classes, local class, static methods or static classes and

even in annonymous classes. The different approaches should be able to translate the code in all of these

scenarios.

D. Translation problems

Another important criteria is the problem of implementing the desired framework. This problem can

be categorised into two sub-problems. They are -

April 30, 2009 DRAFT

12

1) Translation of quantifiers: Translation of quantifers into basic sequence statements would be same

across all the approaches. The basic framework for translation would be very similar to the JML2 approach

[10] [8]. However, this should be done in a systematic manner such that the framework is extensible and

should also not change the exisiting framework of the Eclipse compiler [7].

2) Wrapping and value passing: Each of these translated code need to be wrapped either into a

method, class or as a sequence of statements with proper try-catch blocks. Since all of these approaches

has different needs like in method approach all the parameters in the checkMethod are also propagated

into the quantified translation method. This is same in the case for top-level-single-class approach where

the method parameters are declared final (by, default) so that the local class can access them. Since

determining which of the variables are to pass into the function or local class, a visitor method is

required to check which variables to be used. This may however complicate the implementation.

E. Performance

Performance in this context may come into two flavors. The static compilation time may be effected

by the framework that is chosen. However, since all the approaches have the same basic framwork (only

the wrapping is different) they all have very similar compilation time2. However this is not the case

for the runtime performance. Even though an explicit study has not been done, but based on the initial

results (see Figure 2), the local-class approach([8]) is the slowest. Figure 1 shows how the bytecode is

also affected due to different approaches. It is also a fact that the time to load the class, create an object

and call the appropriate method with the right parameters takes up much time than executing similar

length of sequence of straight-line code. Figures 1, 2 both show comparitive performance wrt to Inline

approach. They are calculated by the follwing formula:-

Pi = (
Ai

Baseline
−Baseline)× 100; where Baseline = Best approach. (4)

In our case it is observed that in both cases, Inline approach is the Best approach.

F. Implemented framework should be extensible and maintainable

The framework should cater to the goals of JML4 approach ([7]). It should not create unnecessary

extensible points and make future implementation difficult. The implementation framework should be

scalable and extensible. It should also be maintainable so that it is easy to debug and make necessary

changes to the implementation framework as needed.

2Strictly, there is a very high probability that the local-class approach would be the slowest since it requires to create several

other local classes (for every quantified expressions)

April 30, 2009 DRAFT

13

Fig. 1. Different bytecode size: This Figure shows by how much % are the different approaches larger in size compared to

Inline approach.

Fig. 2. Different Runtime speed: : This Figure shows by how much % are the different approaches slower compared to Inline

approach.

VIII. EVALUATION

Table IV tabulates the relative differences between all the approaches across different evaluation criteria.

It is evident from the table that, Inline Approach seems to be the best.

IX. CONCLUSIONS

The JML2 approach (Cheon and Leavens), was based on local contextual interpretation. The motivation

behind this was to conform to two-valued logic and also so that ESC and RAC tools behave similarly.

However, in the works followed by Chalin, he showed that proper semantic meaning should be designed

keeping the practitioners in mind. Hence, he proposed a new semantics which was based on Strong

Validity. With changes in semantic meaning, there was also an implementation framework change in

quantified expression translation. From statement translation to local-class, there were many translation

April 30, 2009 DRAFT

14

Approaches Readibilty Support All Support translation Translation Performance Extensible and

features of Q.E. in all scenarios problems wrt Inline Maintenable

Local-Class Embeds Does not support Supports translation in Already Slower by It is extensible

code inside in-line assertions all scenario except when implemented 14% and and maintenable

local class. assertions are inside larger by

It’s fairly annonymous class 150%

readable.

Top-level- Embeds Does not support Supports translation in Can easily be Slower by It is extensible

Single-class code inside in-line assertions all scenario except when implemented 6% and and maintenable

a single Is implemented assertions are inside larger by

class in diff. after code annonymous class 50%

method. It’s restructuring

more readable

Method Embeds Supports all Supports translation in Can easily be Slower by It is extensible

code inside features. all scenario. May cause implemented. 4% and and maintenable

diff. methods. a problem for Wrapping is larger by

Code is annonymous class different 10%

distributed

Greedy- Embeds Supports all Supports translation in Can be Slower by It is extensible

Analysis code inside features. all scenario implemented. 8% and and maintenable

separate try- May be a larger by

catch block. problem for 25%

There are creating

many try-catch interface

blocks

Inline Embeds Supports all Supports translation in Can be Due to

code inside features. all scenario implemented. expression

separate try- Problem in translation

catch block. refactoring framework is

It is inline expression not easily

translation extensible

TABLE IV

EVALUATION OF DIFFERENT APPROACHES ACROSS DIFFERENT

techniques. However the comparitive study conducted in this paper shows, adhering to Inline Approach

is the best strategy available.

April 30, 2009 DRAFT

15

X. ACKNOWLEDGEMENTS

The author would like to thank the following people for their insightful comments on earlier drafts of

this paper: D. Novick and Y.Cheon.

This effort was part of the coursework that the author took during his graduate study at University of

Texas at El Paso.

REFERENCES

[1] BARTETZKO, D., FISCHER, C., MOLLER, M., AND WEHRHEIM, H. Jass - java with assertions. Electronic Notes in

Theoretical Computer Science 55, 2 (2001), 1–15.

[2] BIJLSMA, A. Semantics of quasi-boolean expressions. Beauty is our business: a birthday salute to Edsger W. Dijkstra

(1990), 27–35.

[3] BURDY, L., CHEON, Y., COK, D., ERNST, M., KINIRY, J., LEAVENS, G., LEINO, K., AND POLL, E. An overview of jml

tools and applications. International Journal on Software Tools for Technology Transfer (STTT) 7, 3 (June 2005), 212–232.

[4] CHALIN, P. Reassessing jml’s logical foundation. In Proceedings of the 7th Workshop on Formal Techniques for Java-like

Programs (FTfJP’05) (2005).

[5] CHALIN, P. Are the logical foundations of verifying compiler prototypes matching user expectations? Form. Asp. Comput.

19, 2 (2007), 139–158.

[6] CHALIN, P. A sound assertion semantics for the dependable systems evolution verifying compiler. In ICSE ’07: Proceedings

of the 29th international conference on Software Engineering (Washington, DC, USA, 2007), IEEE Computer Society,

pp. 23–33.

[7] CHALIN, P., JAMES, P. R., AND KARABOTSOS, G. An integrated verification environment for jml: Architecture and early

results. In Sixth International Workshop on Specification and Verification of Component-Based Systems (September 2007),

ACM Press.

[8] CHALIN, P., AND RIOUX, F. Jml runtime assertion checking: Improved error reporting and efficiency using strong validity.

In FM ’08: Proceedings of the 15th international symposium on Formal Methods (Berlin, Heidelberg, 2008), Springer-

Verlag, pp. 246–261.

[9] CHENG, J., AND JONES, C. On the usability of logics which handle partial functions. In: Morgan, C., Woodcock, J.C.P.

(Eds.), 3rd Refinement Workshop (1991), 51–69.

[10] CHEON, Y., AND LEAVENS, G. T. A runtime assertion checker for the java modeling language (jml). In Proceedings of

the International Conference on Software Engineering Research and Practice (SERP 02), Las Vegas (2002), CSREA Press.

[11] CHEON, Y., AND LEAVENS, G. T. A contextual interpretation of undefinedness for runtime assertion checking. In

AADEBUG’05: Proceedings of the sixth international symposium on Automated analysis-driven debugging (New York,

NY, USA, 2005), ACM, pp. 149–158.

[12] CONSTABLE, R. L., AND O’DONNELL, M. J. A Programming Logic (1978).

[13] GRIES, D., AND SCHNEIDER, F. B. Avoiding the undefined by underspecification. Tech. rep., Ithaca, NY, USA, 1995.

[14] HOWARD, R. The eiffel programming language. Dr. Dobb’s J. 18, 11 (1993), 68–73.

[15] JONES, C. B., AND MIDDELBURG, C. A. A typed logic of partial functions reconstructed classically. Acta Informatica

31 (1994), 399–430.

April 30, 2009 DRAFT

16

[16] KRAMER, R. icontract-the java design by contract tool. In Proceedings of Technology of Object-Oriented Languages

(1998), pp. 295–307.

[17] LEAVENS, G. T., POLL, E., CLIFTON, C., CHEON, Y., RUBY, C., COK, D., AND KINIRY, J. Jml reference manual draft,

revision : 1.68, 2002–08.

[18] SCOTT, D. Existence and description in formal logic. In Ralph Schoenman (ed.) Bertrand Russell, Philosopher of the

Century (1967), 181–200.

April 30, 2009 DRAFT

	introduction
	Background
	Expression Evaluation
	Undefinedness
	Non-executable expressions

	Related Approaches
	Contextual Interpretation: JML2 approach
	Expression Evaluation
	Semantics for Undefinedness
	Angelic and Demonic Exceptions
	The Implementation Framework
	Quantified Expressions
	Discussion

	RAC Through Strong Validity
	Approximation of two-valued classical logic: Its shortcomings
	Motivation behind Strong Validity
	Assertions in Industry

	Strong Validity in ESC/JAVA2
	JML Runtime Assertion Checker (RAC)
	Translating Quantified Expressions

	A New Approach to Quantified Expression: Discussion
	Local-class Approach
	Top-level Single-class Approach
	Method Approach
	Statement Approach
	Greedy-Analysis Approach
	Inline Approach

	Evaluation criteria
	Readibility
	Supports all features of quantifiers
	Supports expression translation in all scenarios
	Translation problems
	Translation of quantifiers
	Wrapping and value passing

	Performance
	Implemented framework should be extensible and maintainable

	Evaluation
	Conclusions
	Acknowledgements
	References

