
RAC for JML using Prolog

Presented By: Amritam Sarcar

Seminar Outline

 Overview

 Motivation

 Current Work

 Problem

 Objective

 My Approach

− Introduction

− Formalization

− Top Level Design

− Integration with Eclipse Architecture

 Demo

 Conclusion

 Future Work

Overview

 The Java Modelling Language (JML) is the most

popular BISL for Java.

 Tools exist: RAC to FSPV with ESC.

 Mainstream developer technologies: RAC and ESC

Motivation(1/2)

 Literature Survey

− Symbolic Animation of JML Specifications -

F.Bouquet, et.al

− A Prolog-oriented extension of Java programming

based on generics and annotations - Mirko Viroli,

et.al

− A Verified Compiler For A Structured Assembly

Language - P.Curzon

Motivation(2/2)

 Prolog is a logic programming language.

 Associated with AI and computational linguistics.

 Why not use Prolog as an implementation language ?

 Can Prolog be used for RAC implementation (at least a

subset of it)?

Current Work

 Extending a Java compiler, already integrated within a

modern IDE.

 Maintenance assured by third party developers.

 The actual RAC implementation is done using Wrapper

Classes, an integral part of Java.

Problem?

 The existing implementation cannot be proved using

Theorem Prover

Objectives

 In this project, a formal semantics would be developed

for essentially a part of the sequential Java.

 The J2PL tool would be able to support only JML, so

that it can verify JML-annotated Java source code.

Proposed Solution

 J2PL translates source-level code from Java to Prolog

− It is in a logical theory format that can serve as input for
theorem provers.

− It can be used to prove properties of the Java program,
thus achieving a high level of reliability for this program.

 Formal specification language provides tool support.

My Approach : Introduction

 Formalization of Java classes with JML annotations

into Prolog syntax.

 Compilation of .java classes into .pl code.

− Only RAC generated code.

My Approach : Formalization

 PROLOG syntax:

 specification(spec-name).

 declaration(spec-name, data-kind, data-name, data-type).

 operation(spec-name, operation-name).

 predicate(spec-name, pred-kind, pred-id, predicate)

 data-kind: static | variable | input(op-name) | output(op-name) | local(op-name)

 data-type: atom | int| set(data-type) | pair(data- type, data-type)

 pred-kind: static | invariant | initialization | pre(op-name) | post(op-name)

My Approach : Top Level Design

My Approach :

Integration with Eclipse Architecture

Prolog Code

Generation

.pl code

Demo

Template

class_<class name> :- Field Declaration,

Call Main.

Constructor declaration: - Body of the Constructor

Methods:- Pre_Spec(),

Body of the Method (contains sequence of statements),

Post_Spec().

Pre_Spec_<Method Name>:- JML Clause.

Post_Spec_<Method Name> :- JML Clause.

Conclusion

 Exhaustive test cases has to be generated to verify RAC

Implementation.

− The JML Group has generated approx.700 test cases.

− JUnit test cases can be used.

 From initial results so far obtained, a subset of RAC

implementation can be achieved.

 With sufficient knowledge of Eclipse, RAC Implementation

using Prolog can be integrated into it.

Future Work

 Judiciously extend the subset of RAC Implementation.

− Include Level 0 and Level 1 JML annotations.

− Include floating points.

− Include concepts of Object Orientation.

 Eg : Objects, polymorphism, inheritance.

 Execute generated RAC code from within Java.

 The .pl code obtained should be verified using theorem

prover.

THANK YOU

