

A JML Compiler on Eclipse Platform
[Project Proposal]

Amritam Sarcar
Dept. Computer Science, University of Texas, El Paso

500 West University Avenue

El Paso, TX - 79968
1-325-513-5214

amritamsarcar@yahoo.co.in

ABSTRACT
Java Modeling Language tools cover the full range of verification

from runtime assertion checking (RAC) to full static program

verification, with extended static checking (ESC) in between.

Unfortunately, developers trying to do this must use separate

applications and deal with problems like the tools accepting

slightly different and incompatible variants of JML. Tool

consolidation has become vital. This paper presents the

architecture and design rationale behind a JML Compiler on

Eclipse Platform, an extension of [1]., with a more detailed and

focused on runtime assertion checking

Categories and Subject Descriptors

D.2.4 [Software Engineering]: Software/Program Verification—

programming by contract, assertion checkers, class invariants;

F.3.1 [Logics and Meanings of Programs]: Specifying and

Verifying and Reasoning about Programs—pre- and post-

conditions, invariants, assertions; D.2.3 [Software Engineering]:

Coding Tools and Techniques—object oriented programming;

D.3.2 [Programming Languages]: Language Classifications—

JML.

General Terms

Languages

Keyword

JML, run-time checking, design by contract, interface violation.

1. INTRODUCTION
The Java Modeling Language (JML) is the most popular

Behavioral Interface Specification Language (BISL) for Java.

JML is recognized by a dozen tools and used by over two dozen

institutions for teaching and/or research, mainly in the context of

program verification [2]. Tools exist to support the full range of

verification from runtime assertion checking (RAC) to full static

program verification (FSPV) with extended static checking (ESC)

in between [3]. Of these, RAC and ESC are the technologies

which are most likely to be adopted by mainstream developers

because of their ease of use and low learning curve.

Unfortunately, the current version, accept slightly different and

incompatible variants of JML—sadly this is the case for

practically all of the current JML tools. The reasons behind it are

partly historical—

 • the tools were developed independently, each having their

own parsers, type checkers, etc. and

 • partly due to the rapid pace of evolution of both JML and

Java.

Not only does this last point make it difficult for individual

research teams to keep apace, it also results in significant and

unnecessary duplication of effort. For some time now the JML

community has recognized that a consolidation effort with respect

to its tool base is necessary. In response to this need, three

prototypical “next generation” tools have taken shape: JML3,

JML4, and JML5. This paper is a possible extension of JML4.

2. BACKGROUND AND GOALS
In this section we discuss the main goals to be satisfied in this

project. Before doing so we give a brief summary of the runtime

assertion checking

2.1 Runtime Assertion Checking
Assertions are formal facts about the state of a program; they are

statements that are true at certain points in program code [4].

They are very useful for both debugging and proving correctness

of programs [5]. There may be several ways to support assertions

in programming languages, but one of the most popular

approaches is to use macro statements that are expanded into

appropriate program statements by preprocessors. The main

examples are the assertion facilities of C [6] and C++[7] [8] (e.g.,

the assert macro).Meyer promoted simple assertions into what is

referred to as the design by contract (DBC) [9][10]. There are

various notations and tools that vary widely in their techniques

and approaches to checking assertions at runtime from simple

macro preprocessing and compiling to customized class loaders

with the on-the-fly byte code manipulation.

2.2 Evolution of IDEs and Problem

2.2.1 Evolution of IDEs
With a phenomenal increase in the popularity of modern IDEs

like Eclipse, it seems clear that to increase the likelihood of

getting wide spread adoption of JML, it will be necessary to have

its tools operate well within one or more popular IDEs.

2.2.2 Problem
Since we are targeting mainstream industrial software developers

as our key end users, from an end user point of view, we strive to

offer a single Integrated (Development and) Verification

Environment (IVE) within which they can use any desired

combination of RAC, ESC, and FSPV technology. No single tool

currently offers this capability for JML. One of the important

challenges faced by the JML community its keeping up with the

accelerated pace of the evolution of Java. There is little or no

reward for developing and/or maintaining basic support for Java.

While such support is essential, it is also very labor intensive.

2.3 Goals
Since JML is essentially a superset of Java, most JML tools will

require, at a minimum, the capabilities of a Java compiler front

end. Some tools (e.g., the RAC) would benefit from compiler

back-end support as well. Hence, an ideal solution would be to

extend a Java compiler, already integrated within a modern IDE,

whose maintenance is assured by a developer base outside of the

JML research community. If the extension points can be

judiciously chosen and kept to a minimum then the extra effort

caused by developing on top of a rapidly moving base can be

minimized.

In summary, our general goals are to provide

 • Propose an architecture for a new JML compiler on Eclipse

platform.

 • Extending the work in [1] for JML4 by implementing support

for JML as extensions to the base support for Java so as to

minimize the integration effort required when new versions of the

IDE are released.

 • This project would primarily be focused on runtime assertion

checking on Eclipse platform.

3. PROPOSED ARCHITECTURE
Before proposing our new architecture we present the eclipse

architecture.

3.1 Eclipse Architecture

Figure 1. The Eclipse Architecture showing the Eclipse SDK

and RCP

Eclipse is a plug-in based application platform. An Eclipse

application consists of the Eclipse plug-in loader (Platform

Runtime component), certain common plug-ins (such as those in

the Eclipse Platform package) along with application specific

plug-ins. Well known bundles of Eclipse plug-ins include the

Eclipse Software Development Kit (SDK) and the Eclipse Rich

Client Platform (RCP). While Eclipse is written in Java, it does

not have built-in support for Java. Like all other Eclipse features,

Java support is provided by a collection of plug-ins—called the

Eclipse Java Development Tooling (JDT)—offering, among other

things, a standard Java compiler and debugger.

The main packages of interest in the JDT are the ui, core, and

debug. As can be gathered from the names, the core (non-UI)

compiler functionality is defined in the core pack-age; UI

elements and debugger infrastructure are provided by the

components in the ui and debug packages, respectively.

Figure 2. High-level package view

3.2 JML Compiler Architecture

At the top-most level, JML4 consists of customized versions

of the org.eclipse.jdt.ui and org.eclipse.jdt.core packages (details

will be given below) that are used as drop-in replacements for the

official Eclipse JDT core and ui. These packages are shown in

bold in Figure 2.

In the Eclipse JDT (and JML4), there are two types of parsing: in

addition to a standard full parse, there is also a diet parse, which

only gathers signature information and ignores method bodies.

When a set of JML an-notated Java files is to be compiled, all are

diet parsed to create (diet) ASTs containing initial type

information, and the resulting type bindings are stored in the

lookup environment (not shown). Then each compilation unit

(CU) is fully parsed to fill in its methods’ bodies. During the

processing of each CU, types that are referenced but not yet in the

lookup environment must have type bindings created for them.

This is done by first searching for a binary (*.class) file or, if not

found, a source (*.java) file. Bindings are created directly from a

binary file, but a source file must be diet parsed and added to the

list to be processed. In both cases the bindings are added to the

lookup environment. If JML specifications for any CU or

referenced type are contained in a separate external file (e.g. a

*.jml file), then these specification files are diet parsed and the

resulting information merged with the CU AST (or associated

with the binding in the case of a binary file). Finally, flow analysis

and code generation are performed. Our point of concern would

be implementation of RAC using different existing

methodologies.

4. APPROACH
We would informally describe here our approach towards

achieving the goal, elicited above.

 • Start with trying to understand the eclipse framework. This

knowledge is essential because eclipse is a plug-in architecture.

This would help us to customize the packages required for JML

specifications.

 • Exploring different existing ways to implement the runtime

assertion checker on eclipse platform. They may include

preprocessing[11], wrapper classes[12], direct byte code

generation and aspect oriented programming.

The idea behind exploring different ways is to check that which

way is apt for eclipse platform. We also require to know that a

new version of eclipse would not have adverse affect on JML4

compiler architecture which would implement runtime assertion

checking.

5. EVALUATION

We must admit that the evaluation criteria for verifying and

validating that the proposed architecture indeed fits well into the

eclipse platform has not been formally documented. However an

informal description is given below.

 • Choosing the extension points are most important. It should be

judiciously chosen and kept to a minimum. This would facilitate

minimizing the extra effort caused by developing on top of a

rapidly moving base.

 • One of the rules of Eclipse development is that public APIs

must be maintained forever. This API stability helps avoid

breaking client code. The following convention was established

by Eclipse developers: only classes or interfaces that are not in a

package named internal can be considered part of the public API.

Hence, for example, the classes for the JDT’s internal AST are

found in the org.eclipse.jdt.internal.compiler.ast package, where

as the public version of the AST is (partly) reproduced under

org.eclipse.jdt.core.dom. Hence finding the hooks are very

important for this project.

 • The architecture so developed can be formally or informally

analyzed using π-AAL[13]. Indeed, in addition to representing

software architectures, we need to rigorously specify their

required and desired architectural properties, in particular related

to completeness, consistency and correctness. This would

facilitate us in forming a formal, well-founded theoretically

language based on the modal μ-calculus.

Other evaluation criteria may include performance issues,

susceptibility whether the architecture so designed breaks (due to

evolution of a new architecture of eclipse).

6. WORK FLOW

The manner in which we would try to achieve our goal is

described below.

• Analyze the eclipse architecture.

• Understanding the eclipse framework.

• Explore the various ways of implementing runtime assertion

checking as a standalone application and as well as on Eclipse

platform.

• Conduct experiments and come up with an implementation of a

prototype.

7. DELIVERABLES
The deliverables for this project would include one of the

following. They are ordered in the ascending order of difficulty

i.e. the most difficult is in the last.

• A report on implementing Runtime Assertion Checker on

Eclipse. This report would include which methods were analyzed,

evaluation criteria for choosing amongst the different methods.

• If such an architecture can be feasible, then we can formalize

this new architecture using π-AAL.

• An implementation of the JML compiler on Eclipse platform.

8. CONCLUSION
In this paper, we have outlined a strategy for extending eclipse

framework to incorporate JML. In particular use runtime assertion

checking on eclipse platform.

This strategy is not without challenges, however. Two of the more

troublesome are finding the right extension points and minimal

change in the actual eclipse source code. The architecture that

would be eventually chosen must adhere to certain specific

criteria.

Acknowlegements
We gratefully acknowledge the support extended from

Dr.Yoonsik Cheon, my research advisor who has always guided

us whenever we were stuck with a problem.

9. REFERENCE
[1] Patrice Chalin, Perry R. James, and George Karabotsos. An

Integrated Verification Environment for JML: Architecture and

Early Results. Sixth International Workshop on Specification and

Verification of Component-Based Systems (SAVCBS 2007), pages

47-53, September 2007.

[2] G. T. Leavens, “The Java Modeling Language (JML)”:

http://www.jmlspecs.org, 2007.

[3 [3] L. Burdy, Y. Cheon, D. R. Cok, M. D. Ernst, J. R. Kiniry, G.

T. Leavens, K. R. M. Leino, and E. Poll, “An Overview of JML

Tools and Applications”, International Journal on Software Tools

for Technology Transfer (STTT), 7(3):212-232, 2005.

[4] C. A. R. Hoare. An axiomatic basis for computer

programming. Communications of the ACM,

12(10):576{583, October 1969.

[5] Jurgen F.H. Winkler and Stefan Kauer. Proving assertions is

also useful. ACM SIGPLAN Notices, 32(3):38{41, March 1997.

[6] Brian W. Kernighan and Dennis M. Ritchie. The C

Programming Language. Prentice-Hall, Inc., Englewood Cli®s,

N.J., 1978.

[7] Margaret A. Ellis and Bjarne Stroustrup. The Annotated C++

Reference Manual. Addison-Wesley Publishing Co., Reading,

Mass., 1990.

[8] Bjarne Stroustrup. The C++ Programming Language: Third

Edition. Addison-Wesley Publishing Co., Reading, Mass., 1997.

[9] Bertrand Meyer. Applying \design by contract". Computer,

25(10):40{51, October 1992.

[10] Bertrand Meyer. Object-oriented Software Construction.

Prentice Hall, New York, NY, second edition, 1997.

[11] Yoonsik Cheon. A Runtime Assertion Checker for the Java

Modeling Language. Department of Computer Science, Iowa

State University, TR #03-09, April 2003.

[12] R.P.Tan, S.H.Edwards. An Assertion Checking Wrapper

Classes for Java. SAVCBS’ 03 Helsinki, Finland.

[13] F. Oquendo. Formally modeling software architectures with

the UML 2.0 profiles for π-ADL, ACM SIGSOFT Software

Engineering Notes, 31(1):1-13, January 2006.

http://www.eecs.ucf.edu/~leavens/SAVCBS/2007/
http://www.eecs.ucf.edu/~leavens/SAVCBS/2007/
http://www.eecs.ucf.edu/~leavens/SAVCBS/2007/

