
Runtime Assertion Checking Support for JML on Eclipse Platform

Amritam Sarcar
i

Department of Computer Science

University of Texas at El Paso,

500 W. University Avenue

El Paso TX 79968, USA

Email: asarcar@miners.utep.edu

Abstract

The Java Modeling Language (JML) used to document

design for Java and has been used as a common

language for many research projects. The inability to

support Java 5 features is reducing user base, feedback

and the impact on JML usage. The performance of

JML2 tools is also not that impressive. The JMLRAC

compiler on average is five times slower than the Javac

compiler. In this paper, we present an architecture that

would have better performance than JML2 and also try

to alleviate the problem of extensibility of JML2 tools.

1. Introduction

The Java Modeling Language (JML) is a formal

behavioral specification language for Java. It is used for

detail design documentation of Java modules (classes

and interfaces). JML has been used extensively by

many researchers across various projects. JML has a

large and varied spectrum of tool support. It extends

from runtime assertion checking (RAC) to theorem

proving.

Amongst all these tools, RAC and ESC/Java are most

widely used amongst developers. However, lately there

has been a problem for tool support. The problem lies

in their ability to keep up with new features being

introduced by Java. In this paper, we propose to

redevelop JML compiler (Jmlc) on top of a well

maintained code base. We present the architecture that

would support JML on an extensible architecture like

Eclipse. We also present a new architecture for the

JMLRAC compiler with potential performance gain

than its predecessor.

2. Problems with JML Tools

The Common JML tools, a.k.a JML2 do not support

robustness [1]. The Common JML tools were built on

an open source Java compiler and suffered from

extensibility; by extensibility we mean language and

tool extensions. For example, no JML tool yet supports

the several new features of Java 1.5, the most important

is the introduction of generics. The code base of this

open source compiler was not built to support

extensibility, the maintenance of which has become

extremely difficult.

Another pressing problem of the JML2 tools is its

performance. The existing JML2 tools, more

importantly Jmlc (the runtime assertion checker) from

the performance point of view is really very slow. The

compilation time taken is huge compared to the

compilation speed of Javac (see Fig.1). However, it is

evident that since Jmlc does more work than Javac, it

would take more time. The question that is more

important to us is what is causing this slowness. Three

reasons can be cited immediately:

 Jmlc does more work than Javac.

 Jmlc being built on an open source compiler,

results in decreasing its performance. This

compiler is not as efficient as Javac.

 The compilation process of Jmlc is double

round. That is, every compilation unit

undergoes two-time compilation.

Figure 1. Relative-slowness of Jmlc compared to

Javac. Twenty-five programs that were test run for

checking the compilation time were taken from the

programs that were distributed as a part of the JML

package, under the samples folder.

3
rd

. Annual Meeting for Computer Alliance for Hispanic Serving Institutions (CAHSI), Googleplex, Mountain View,

California, USA, January 2009

mailto:asarcar@miners.utep.edu

Obviously there's nothing that we can do about the first.

Regarding the second, there is work going on to build

the next generation tools on the Eclipse platform [2],

which is claimed to be more efficient. The third is the

research question being addressed in this paper.

3. Double-round Architecture

 (Jml2 Architecture)

The normal flow of any java source code starts from the

scanner phase and ends in the code generation phase

going through the different phases. For the case for

JML-annotated Java source code, after the type

checking phase, rather than going straight to the code

generation phase it goes for second-round of

compilation. In this technique, the runtime code (which

is in source code format) is directly merged into the

original source code.

Addition of a special node, to depict that the node is a

"special node"(for RAC purpose) is required for pretty

printing [3]. On pretty printing, we fetch this new

source code and resend to the scanning phase for the

second round of compilation. The major bottleneck for

this architecture is the double-round compilation. This

is because it affects the runtime performance. It is a

well-known fact that in a compilation phase, most time

is spent in the scanning phase (see Fig. 2). Since this

requires interacting with a slower device like hard-disk.

In this architecture, scanning and parsing is done twice

for the original code which slows down the

performance.

Figure 2. The average percentage of each phase on

running twenty-five test cases. These were taken

from the programs that were distributed with JML

package. They were timed on Eclipse platform.

4. Incremental Architecture

The architectural style that we call incremental

architecture works on the same fashion as the double-

round architecture. However this time, the code that is

sent to the scanner phase for the second round of

compilation is not the entire code but only runtime

code. Generally speaking, this kind of architecture

actually supports abstract syntax tree (AST) merging

mechanism (see Fig.3). That is to say, the portion of

code that is sent for second round of compilation,

results into an AST. This new AST needs to be merged

with the original AST.

Figure 3. The incremental architecture designed on the Eclipse framework. Unlike in double-round

compilation in this architecture only the RAC code is sent. In the second-round we merge using the RAC

AST and the original AST to get the merged AST ready to go to byte-code generation phase.

Figure 4. The status of the java source code and its intermediate format (AST) changes with every step. In

step 1, in the first round the source code is changed to an AST, with the help of which RAC source code is

generated and saved in a temporary folder. In step 3, this RAC code is retrieved and parsed and is merged

with the original AST, which is done in step 4. In step 5 and 6 this merged AST is fully type checked and code

generation is done.

We must also note that the Eclipse framework does not

provide us with any API that we can take help of for

this increment approach. The unit of increment in

Eclipse is a compilation unit. However, in our case the

unit of increment is a sequence of Java statements. The

idea behind this approach is incremental compilation.

Since runtime assertion checking code generator

basically generates valid Java statements on-the-fly, it

should be possible for us to create an AST that would

contain information of the runtime code only, and also

be able to merge it with the original AST.

A key component of this interaction is the separation of

the formation of AST nodes and binding them to their

parent AST node. The complexity of this strategy is

solely depended upon the following;

 Forming new AST nodes (in the second round,

that of JML-specific statements). This AST

must contain only runtime assertion checking

information.

 Merging of the runtime AST with the original

AST.

 Nullifying resolutions for generic types.

This model parses and type checks the original source

code (before RAC Generation) in the first cycle of

compilation, and uses this type checked AST to further

mutate with the RAC version. The steps involved to

implement this technique are (see Fig. 4)

1. In the first cycle, parse and type check the

original source code.

2. Using this type checked AST, RAC code is

generated in source code format, which is

further saved in the temporary folder.

3. The RAC code is parsed; parsing the RAC

code creates an initial AST.

4. This un-type checked AST (RAC-AST) is

merged to the original type checked AST

(original-AST).

5. Type-binding type-checking and flow-analysis

is again done on this merged AST.

6. The resulting AST is sent for code generation.

The main advantage of this architectural style is that the

computation time would be greatly reduced. The reason

behind this is that even though, this approach does

double-round compilation, for the second time, it only

parses the newly added code which is the runtime code.

However it also has some disadvantages. The lack of

support from existing compiler framework or

implementation may pose a serious problem. The

original program code is changed by the preprocessor,

i.e., line numbers of compiler errors do not actually fit

the line numbers of the program. The same problem

arises with debugging or runtime exceptions.

5. Current Status and Future Work

In this paper, we have outlined a strategy for extending

the Eclipse framework to incorporate JML RAC

compiler into it. This strategy is not without challenges,

however. Choosing the right extension points with

minimal changes in the existing source code are

difficult. We are currently building the prototype that

would support the features introduced in this paper.

On successful completion of the prototype we would

eventually go onto full-blown development with

Concordia University and Kansas University.

References

1. Lilian Burdy, Yoonsik Cheon, David R. Cok,

Michael Ernst, Joe Kiniry, Gary T. Leavens,

K. Rustan M. Leino, and Erik Poll. An

Overview of JML Tools and Applications.

International Journal on Software Tools for

Technology Transfer, 7(3):212-232, June

2005.

2. Patrice Chalin, Perry R. James, and George

Karabotsos. An Integrated Verification

Environment for JML: Architecture and Early

Results. Sixth International Workshop on

Specification and Verification of Component-

Based Systems (SAVCBS 2007), pages 47-53,

September 2007.

3. Yoonsik Cheon. A Runtime Assertion Checker

for the Java Modeling Language. Technical

Report 03-09 [The authors’ PhD dissertation],

Department of Computer Science, Iowa State

University, Ames, Iowa, April 2003).

i
 The work of the author was supported in part by NSF under Grant No. CNS-0707874

