
A JML Compiler on Eclipse Platform
Amritam Sarcar

Dept. Computer Science, University of Texas, El Paso
500 West University Avenue

El Paso, TX - 79902
1-325-513-5214

amritamsarcar@yahoo.co.in

ABSTRACT
Java Modeling Language tools cover the full range of verification
from runtime assertion checking (RAC) to full static program
verification, with extended static checking (ESC) in between.
Unfortunately, developers trying to do this must use separate
applications and deal with problems like the tools accepting
slightly different and incompatible variants of JML. This paper
presents the architecture and design rationale behind a JML
Compiler on Eclipse Platform, an extension of [1], with a more
detailed and focused study on runtime assertion checking

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verification—
programming by contract, assertion checkers, class invariants;
F.3.1 [Logics and Meanings of Programs]: Specifying and
Verifying and Reasoning about Programs—pre- and post-
conditions, invariants, assertions; D.2.3 [Software Engineering]:
Coding Tools and Techniques—object oriented programming;
D.3.2 [Programming Languages]: Language Classifications—
JML.

General Terms
Languages

Keyword
JML, run-time checking, design by contract.

1. INTRODUCTION
The Java Modeling Language (JML) is the most popular
Behavioral Interface Specification Language (BISL) for Java. It is
a formal specification language that can document detailed
designs of Java classes and interfaces. RAC and ESC are the
technologies which are most likely to be adopted by mainstream
developers because of their ease of use and low learning curve.
JML does not support the many new features of Java version 5,
most notably generics. This inability to support current Java
programs is limiting JML’s user base, decreasing user feedback,
and lessening the impact of JML-based research. The Verified

Software grand challenge identified the lack of extensible tools
for formal methods research as a major impediment to
experiments.
Unfortunately, the current version, accepts different and
incompatible variants of JML—sadly this is the case for
practically all of the current JML tools. The reasons behind it are
partly historical—
 • the tools were developed independently, each having their
own parsers, type checkers, etc. and

• partly due to the rapid pace of evolution of both JML and
Java.

Not only does this last point make it difficult for individual
research teams to keep apace, it also results in significant and
unnecessary duplication of effort. For some time now the JML
community has recognized that a consolidation effort with respect
to its tool base is necessary. In response to this need, three
prototypical “next generation” tools have taken shape: JML3,
JML4, and JML5. This paper is a possible extension of JML4.

Paper Structure. The structure of this paper is as follows. In
section 2, we first give the background details of this project.
Next in section 3 we sketch the limitations of existing JML tools.
We then in section 4 elicit the objectives of the JML group in
general and our goals for this project. Next in section 5 we
discuss about several approaches to translating assertions into
runtime checking code. In the next section, we give an overview
of the existing Eclipse architecture and that of the JML4. In
section 7 we present our proposed architecture, which actually
contains several approaches. Section 8 and 9 talks about the
implementation and bytecode architecture. In section 10 we enlist
the evaluation criteria/methods that we would employ.

2. BACKGROUND
In this section we give a brief introduction to runtime assertion
checking, extensible compiler construction, abstract syntax tree
and Eclipse IDE.

2.1 Runtime Assertion Checking
Assertions are formal facts about the state of a program; they are
statements that are true at certain points in program code [4].
They are very useful for both debugging and proving correctness
of programs [5]. There may be several ways to support assertions
in programming languages, but one of the most popular
approaches is to use macro statements that are expanded into
appropriate program statements by preprocessors. The main
examples are the assertion facilities of C [6] and C++ [7] [8] (e.g.,
the assert macro).Meyer promoted simple assertions into what is
referred to as the design by contract (DBC) [9][10].

This work was done as a class project for CS5381 under Dr. Yoonsik Cheon for
Spring, 2008 at University of Texas at El Paso. This report also documents
partially the work that the author did as a research assistant under Dr. Cheon. This
report may be used in future as a memo for JML Group to address the issue of
extensibility and support runtime assertion checking in Eclipse

2.2 Extensible Compiler Construction
While processing of programs is an old research topic, there are
still plenty of opportunities for improvement when it comes to
extensibility. This is particularly true for tools (like JML) that
need to support full languages and process large bodies of code.
Early stages in compilers such as scanning and parsing are well
understood and there exists techniques for extensive
specifications [2]. However in later stages, viz. name binding,
type checking, and code optimization, they rely on context-
sensitive and are still often hand coded in an ad-hoc fashion with
little support for extensibility (like Eclipse).
2.2.1 Modularity
Modularity is often used to describe the possibility to decompose
a system into modules [14]. This allows each sub problem, or
concern to be studied in isolation, a property which is known as
separation of concerns [15]. There may be several decomposition
criteria, all of which are desirable depending on the situation.
Some of them are –
 • Separate Computations The goal is to be able to reuse and
combine the different computations to obtain different tools, and
to express and understand each computation in isolation.
 • Language Extension The goal is to be able to reuse the base
language implementation for many different extensions, to
combine extensions, and to be able to express and understand
each extension in isolation.
 • Language Specification The goal is to provide traceability
between the language specification and the implemented
compiler.

2.2.2 Scalability
It is important that a compiler technology is scalable both to full
languages and large sized applications to be of practical use.
Mainstream programming languages are often complex and
contain many corner cases. Even small applications tend to use
most language features in Java and fail to compile if only a subset
is supported. It is also worth noticing that for a tool to be useful in
an industrial setting it needs to be able to analyze code bases in
the range of a hundred thousand lines of code or more.

2.3 Abstract Syntax Tree
The classes for the JDT’s internal AST are found in the
org.eclipse.jdt.internal.compiler.ast package,
where as the public version of the AST is (partly) reproduced
under org.eclipse.jdt.core.dom. This comprises of the
Abstract Syntax Tree (AST) for the Java language, as well as
objects that perform operations on the AST. The knowledge of
AST is required for us to better understand – where and how to
merge (if necessary) our RAC generated AST with the existing
AST (developed by the native compiler).

2.3.1 AST class:
The AST class is the owner of the AST. Any new AST nodes
created by using an object of this class will be owned by that
object. The class has two static fields that are used to specify
which version of the Java Language Specification (JLS) should be
used when parsing source code. AST.JLS2 refers to the second
version of the JLS, while AST.JLS3 refers to the third version.
The AST class also acts as a factory for producing ASTNode

classes. A node of any type can be created using a method of the
form newXXX where XXX is the name of the syntax element to
be created. Each node that is created in this way does not have
any type name or value specified. The node also has no parent.
Finally, AST provides a utility method
resolveWellKnownType(). This method takes in a String
which names a well known type. It returns an ITypeBinding,
which is an interface that represents a well known type.

2.3.2 ASTNode class
The ASTNode class is the superclass for the many AST node
types. An ASTNode represents a syntactic element in the Java
language. Each node has links to each of its children, as well as to
its parent node. Therefore, the AST can be traversed either from
the top down, or from the bottom up. In addition, each ASTNode
object contains the range in the source file where the syntactic
element can be found. The getStartPosition() method
returns an index into the source file where the element starts, and
the length() method returns the number of characters that
comprise the element.

2.3.3 ASTParser class
The ASTParser class is responsible for converting source code
into an AST. There are no constructors to use for this class.
Instead a static factory method called newParser() is used to
create a new ASTParser. The argument to this method specifies
the level of the Java Language Specification to use. The
setSource() method specifies the source to compile. The
createAST() method will create the AST from the source that
was given to the object. It returns an object of type ASTNode,
which will represent the root of the produced AST. A useful
method that this class provides is setProject(). This method
takes in an IJavaProject object that is used to specify a Java
project on the workbench.This Java project will be used to resolve
types in the source string that otherwise could not be resolved by
the compiler.

2.3.4 ASTVisitor class
To perform operations on an AST, we use the ASTVisitor class.
ASTVisitor is an abstract class. It provides two operations to be
performed on every node of an AST. The visit() method
returns true if the node has children that will be visited after the
current node is visited. The endVisit() method is similar to
visit() except that the children of the node will be visited
before the node itself is visited. In addition to all the type-specific
visit operations, there are two operations that perform work on an
ASTNode in general, and not on specific types within the AST
hierarchy. The preVisit() method is used to visit an
ASTNode before the type-specific visit operation is called on that
node. The postVisit() method visits the ASTNode after the
type-specific visit operation on that node.

2.4 Eclipse IDE
Eclipse is a plug-in based application platform. Well known
bundles of Eclipse plug-ins include the Eclipse Software
Development Kit (SDK) and the Eclipse Rich Client Platform
(RCP). While Eclipse is written in Java, it does not have built-in

Fig1. The AST

hierarchy

support for Java. Like all other Eclipse features, Java support is
provided by a collection of plug-ins—called the Eclipse Java
Development Tooling (JDT)—offering, among other things, a
standard Java compiler and debugger. The JDT Core plug-in
provides a JCK-compliant Java compiler with incremental
recompilation, which allows high performance and scales up to
large projects.

Figure 2. The Eclipse Architecture showing the Eclipse SDK
and RCP

3. LIMITATIONS OF JML2
The first generation JML tools essentially consist of –
 • Common JML tool suite—formerly the Iowa State University
(ISU) JML tool suite—also known to developers as JML2, which
includes the JML RAC compiler and JmlUnit [3],
 • ESC/Java2, an extended static checker [16], and
 • LOOP a full static program verifier [17].
Of these, JML2 is the original JML tool set. Although ESC/Java2
and LOOP initially used an annotation language other than JML,
they quickly switched to use JML.

3.1 Problem in Existing JML Infrastructure
Despite JML’s demonstrated potential, its inadequate
infrastructure threatens its continued use in this role. The initial
version of JML does not support sufficiently robust tools.
JML2 was essentially developed as an extension to the multijava
(MJ) compiler. By “extension”, we mean that
• for the most part, MJ remains independent of JML
• many JML features are naturally implemented by subclassing
MJ features and overriding methods—e.g. Abstract syntax tree
nodes with their associated type checking methods;
• in other situations, extension points (calls to methods with
empty bodies) were added to MJ classes so that it was possible to
override behavior in JML2.

The multijava compiler was not designed for extensibility; after
much extension and refactoring to support JML it has become
unwieldy and difficult to maintain. Extensibility is needed not just
to track evolution in the programming language, but also to allow
experimentation in specification language design.
Version 5 of the Java language substantially extends Java with
any additional features, most notably generics. No JML tool
properly supports generics. The common JML Tools do not
support other features of Java 5. Researchers want to evaluate
their tools on current (Java 5) benchmarks.
This puts great pressure on fundamental tool support: parsing and
basic compiler infrastructure have to be frequently updated to
track the language’s evolution. The first generation JML tools are
mainly command line tools, though some developers were able to
make comfortable use of them inside Emacs, which in a sense,
can be considered an early integrated development environment
(IDE). In recognition of this, early efforts have successfully
provided basic JML tool support via Eclipse plug-ins, which
mainly offer access to the command line capabilities of the JML
RAC or ESC/Java2.
Another issue is practical adoption of building integrated
development environments (Ides).

3.2 Performance & Size Issue
The existing JML2 tools, more importantly ‘jmlc’ the runtime
assertion checker from the performance point of view is really
very slow. The compilation time taken is huge compared to the
compilation speed of ‘javac’. However, it is evident that since
jmlc does more work than javac, it would take more time. The
following graph depicts that the minimum time difference
between the two compilation tools is ~700%, whereas the average
time difference is ~930%. The JML group at large had not forseen
such an enormous difference.

On compilation, another important criteria is the bytecode size.
This becomes of utmost importance when space is of prime
importance. In this graph too, we see a huge difference in terms of
%difference between the size of the compiled code. The
maximum difference is almost 7000 percent. That is, about 70
times the size of a .class file compiled using javac.
The results however need to be further reviewed to come to a
proper conclusion.
This paper focuses to come up with such an architecture which
would help us to decrease time and size of the compiled code.

4. OBJECTIVES AND GOALS
In this section we elicit the objectives behind JML4 and a possible
extension to it. We also present the goals of this project.

4.1 Objectives
Resource constraints and architecture of the current tools of JML
prevent their thorough integration into a development
environment such as Eclipse. The tools are written in a tightly
integrated way that is not flexible and extensible. Some of the
objectives of JML group are –
 • The infrastructure must be extensible. They must smoothly
accommodate future changes to the Java programming language.
 • The proposed software infrastructure must keep with the
evolution of Java. It must support the features of Java 5 and Java
6, and be extensible to future versions of Java.
 • Allowing the language itself to be extensible implies that the
tool architecture should also be modular and designed for
extension. The modularity and extensibility of the architecture is
very crucial.
 • Apart from Eclipse, the software infrastructure should also be
integrated to other Ides.

4.2 Runtime Assertion Checking Features
The JML group in their initial draft had come up with a
comprehensive study on how to divide JML statements into
different levels. This partitioning of features was mainly due to
the complexity of understanding and usage from the user point of
view. The table shown in Appendix A-3 provides us with a
feature table that would enable us to figure whether our prototype
or architecture conforms to the basic and/or advanced needs to
support primarily runtime assertion checking code. This code
helps us to validate our proposed architecture against these
features.

4.3 Design Goals
Since JML is essentially a superset of Java, most JML tools will
require, at a minimum, the capabilities of a Java compiler front
end. Some tools (e.g., the RAC) would benefit from compiler
back-end support as well. Hence, an ideal solution would be to
extend a Java compiler, already integrated within a modern IDE,

whose maintenance is assured by a developer base outside of the
JML research community. However, this is not always the best
approach, since existing compilers may not have been designed
with extensibility as one of the main goals. Furthermore, they
may be constrained to work with infrastructures which themselves
are not easily extensible.
Our approach was to design and implement A JML Compiler on
Eclipse Platform, with extensibility as its primary design goal. If
the extension points can be judiciously chosen and kept to a
minimum then the extra effort caused by developing on top of a
rapidly moving base can be minimized.
To support our objectives, we distilled the following requirements
from the above discussion involved.
 • Extensibility: The architecture so designed should support
extensibility. The JML features should be incorporated into the
Eclipse framework in such a manner so that minimum extension
points are used so that the extensibility of Eclipse is not
hampered.
 • Simplicity: It must be relatively simple to develop new
extensions. Users of the framework should not need to understand
complicated new concepts or a complex software design in order
to implement their extensions.
 • Modularity: We require two kinds of modularity. First, the
workbench itself should be very modular, so that the different
facets of each extension can be easily identified with the correct
module of the workbench. Second, the extension should be
modular (separate from the workbench code). Users of the
workbench should not need to touch existing code; rather, they
should be able to describe the extensions as specifications or code
that is separate from the main code base.
 • Proportionality: Small extensions should require a small
amount of work and code. There should not be a large overhead
required to specify an extension.
 • Analysis capability: The workbench infrastructure should
provide both an intermediate representation and a program
Analysis framework. This is necessary because some extensions
may lead to a lot of runtime overhead unless compiler
optimization techniques are used to minimize that overhead.
Some of the other measurable goals that can be incorporated are
Time and Space. We should be able to reduce time substantially
than the former JML tools. For achieving so, we require to
judiciously choose between our several architectural approaches.
Another important criteria is the size of the compiled code must
not be enormously high as in previous tools.

4.4 Contributions
The contributions of this paper are the following –
 • We have identified the requirements for a workbench for
extending JML tools by analysing previous research in this area.
 • We present A JML Compiler on Eclipse Platform, an instance
of such a workbench with a clean, extensible architecture.
 • We have enlisted some key points, features of runtime
assertion checker which would help us to validate our architecture
against these requirements.
 • The extensibility of Eclipse can be seen as a form of
substantial exercise in extensible software development, with the
primarily goal of disentangling features from the existing base
compiler.

5. JML RAC
An essential requirement for runtime assertion checking is
transparency; unless an assertion is violated and except for
performance measures (time and space), the behavior of the
original program should be unchanged. Another requirement is
that runtime assertion checking should reflect the semantics of
JML. It should be sound in that it does not produce any false
positives [18]. The runtime assertion checker should also strive to
detect as many potential errors – inconsistencies between
specifications and code – as possible; ideally, it should be
complete in that it detects all such errors.

5.1 Assertion Blocks, Methods, and Classes
An important design dimension is to define the structure of
runtime assertion checking code and the way it interacts with
other assertion checking code and the code being checked. There
are several possibilities in organizing assertion checking code:
 • Blocks of Java statements: A specification may be translated
into a sequence of Java statements, called an assertion checking
block or assertion block for short. The assertion block may be
injected into the appropriate position in the method body.
 • Separate methods: An assertion checking block may become a
separate method of the class being checked, called an assertion
checking method or an assertion method for short. To check an
assertion, the assertion method is called in place of the assertion
block.
 • Separate classes: The assertion methods, instead of being
members of the class being checked, may form a separate class,
called an assertion checking class or an assertion class for short.
To check an assertion, an assertion object is created and an
appropriate assertion method is called on the assertion object.

5.2 Strategies for Assertion Support
Assertions may be specified at the class level (invariants) or on
the method level (preconditions and postconditions). A number of
systems exist for the Java programming language that support
assertion techniques in different ways. The goal of this section is
to describe different possible approaches for supporting contracts
for the Java programming language. Generally three different
approaches are possible:
 • Built in/Compilation-based approach: This means that support
for contracts is directly included in the programming language.
The programming language contains language constructs to
formulate assertions in one way or another. The syntactical
correctness of assertions is checked directly by the compiler. In
addition a runtime environment must be available to perform the
runtime assertion checks. Ideally the runtime environment is
flexible enough to allow a very fine-grained control of the
assertion checking mechanism, i.e., it should be possible to
selectively enable and disable assertion checking. The main
advantage of this approach is the homogeneous integration of
assertions into the programming language, i.e., compiler error
messages are consistent, debugging tools can properly consider
assertions (e.g., correct line numbers and stack traces).
 • Preprocessing: This is the most popular kind of support for
assertions in a programming language. The general idea is to
formulate assertions separate from the program or to include the

assertions as comments. A preprocessor is used to weave the
assertions into the program or to transform the comments
containing assertion formulas into programming language code.
The main advantage of this approach is the separation of
programming logic and contracts. This is important in cases,
where the programming language itself does not support
assertions and the programming language must not be altered for
various reasons (e.g., conformance to standards, not enough
knowledge available for changing the compiler). The main
disadvantage of this approach is that the original program code is
changed by the preprocessor, i.e., line numbers of compiler errors
do not actually fit the line numbers of the program. The same
problem arises with debugging or runtime exceptions.
 • Meta-programming: Programs that have the possibility to
reason about themselves have so called reflective capabilities. The
Java programming language, e.g., has reflective capabilities and
may access information about elements of a Java program by
means of a reflection API. The main advantage of meta-
programming approaches is that no specialized preprocessor has
to be used but the native compiler. Nevertheless a specialized
runtime environment has to be used to enable assertion checking.
 • Byte Code Manipulation: Another approach for languages
based on virtual machines, such as Java, is to manipulate the
virtual machine's bytecode to inject assertion checking code. The
manipulation can be done either at compile time or loading time,
e.g., using a customized class loader.

Figure 3. Built in approach to runtime assertion checking.

In JML, the compilation-based approach is adopted, as it is an
intuitive and easy-to-use approach (see Figure 3). JML compiler
is essentially a Java compiler with additional capability of
translating JML specifications into automatic runtime checks.

6. ECLIPSE JDT ARCHITECTURE
Before we discuss about the Eclipse Architecture in detail, we
present some of the issues that are inherent about Eclipse. Eclipse
does not create applications with true Java functionality.
Developers must port the SWT to all platforms on which Eclipse
runs, which can be complex, time consuming, and expensive.
The main packages of interest in the JDT are the ui, core, and
debug. As can be gathered from the names, the core (non-UI)
compiler functionality is defined in the core package; UI
elements and debugger infrastructure are provided by the
components in the ui and debug packages, respectively.
One of the rules of Eclipse development is that public APIs must
be maintained forever. This API stability helps avoid breaking
client code. The following convention was established by Eclipse
developers: only classes or interfaces that are not in a package
named internal can be considered part of the public API.

6.1 Compilation Phases Overview
The main steps of the compilation process performed by JDT are
illustrated in Figure 4. In the Eclipse JDT (and also in JML4),
there are two types of parsing: in addition to a standard full parse,
there is also a diet parse, which only gathers signature information
and ignores method bodies. When a set of JML annotated Java
files is to be compiled, all are diet parsed to create (diet) ASTs
containing initial type information, and the resulting type
bindings are stored in the lookup environment. Then each
compilation unit (CU) is fully parsed. During the processing of
each CU, types that
are referenced but not yet in the lookup environment must have
type bindings created for them. This is done by first searching for
a binary (*.class) file or, if not found, a source (*.java) file.
Bindings are created directly from a binary file, but a source file
must be diet parsed and added to the list to be processed. In both
cases the bindings are added to the lookup environment. Finally,
flow analysis and code generation are performed.

Figure 4. JDT compilation phases.

6.2 Components of JDT
This section describes very briefly the most important
components of the JDT compilation phases.

6.2.1 Scanning
Scanning of source code is done at a much later stage than
anticipated. When each CU is diet parsed by invoking the
DietParse() method, it in turn calls the Scanner() method
which actually scans the source code that is linked/bounded to the
CU.

6.2.2 Parsing
The JDT’s parser is auto-generated from a grammar file (java.g)
using the Jikes Parser Generator (JikesPG) and a custom script
that resides at org.eclipse.dt.core/scripts. The grammar
file, java.g, closely follows the Java Language Specification[19]

6.2.3 Type Checking
Type checking is performed by invoking the resolve() method
on a compilation unit.

6.2.4 Flow Analysis
Flow analysis is performed by the analyseCode() method on a
compilation unit.

6.3 Eclipse back-end Compiler
Contrary to popular belief, the Eclipse framework has just one
back-end compiler support. This section discusses the overall
interaction between the command-line tools, GUI and the
compiler. Figure 5 illustrates the interactivity between the
different APIs. The command line API (at an abstraction level)
contains 3 methods basically. The main() method is the starting
point of interaction with Eclipse via command prompt. It receives
the arguments and in turn invokes the compile() method. This
method decodes the command line arguments and call the
performCompilation() method. This method initializes the
Batch.Compiler to its default settings and passes the
CompilationUnits denoted as CUs to
internalBeginToCompile() method, which basically is
the starting point of the compiler API.
In GUI case, on invoking the Eclipse framework, several threads
concurrently starts, of which the run thread is invoked from
org.eclipse.core.internal.jobs.Worker.run()
method. This run thread in turn calls the build() method in the
BuildManager class. This invokes the basicbuild() method.
If the user now, writes some code and builds/saves it,
automatically builddeltas() method is invoked. This
method tells the framework only those resources that have
changed since the last build need to be considered for
compilation. The delta only tells you the file was changed. If any
delta is found, they are send to incrementalbuild()
method, which in turn invokes incrementalcompiler()
method. This method identifies which CU is to be built. And then
sends this to the jdt.compiler class.

Figure 5. Interaction between command-line tools, Eclipse

GUI and the backend compiler.

7. PROPOSED TOOL ARCHITECTURES
The new proposed architecture has several alternatives. Each of
them is presented below.

7.1 Double Round Approach
The JML2 runtime assertion checking method[11] has been
implemented in the context of Eclipse Architecture. The approach
for implementing the JML RAC compiler is to reuse the existing
source code of JML and Eclipse tools as much as possible, if
necessary, by refactoring it. The Eclipse type checker and its
underlying Java compiler provide a good code base for the JML
RAC compiler. They consist of several compilation passes. Our
idea is to introduce new compilation passes to generate assertion
checking code, and to rewire the whole compilation passes to

generate bytecode for both the original and assertion checking
code.
Ideally, we would like to have a minimal duplication of
compilation passes. However, the complexity of assertion
checking code and the infrastructure of existing tools make such
an optimal solution difficult, and which lead us to a strategy,
called double-round compilation[11]. Figure 5 shows the
architecture of the Eclipse compiler. The original path of Java file
not annotated with JML specifications would flow through
Scanner, Parser, and then to Static analysis and code generation.
To implement the double-round compilation strategy, we added a
new compilation pass “RAC code” after the typechecking and
static analysis pass. This pass generates runtime assertion
checking code from the typechecked abstract syntax tree. It
generates actual source code and then combines with the existing
source code. This newly generated code is again sent through the
compilation phases for the second time. This time it directly goes
from static analysis to code generation as depicted using the red
dotted lines.

7.1.1 Discussion
The main advantage of this approach is the separation of
programming logic and contracts. It is the simplest approach for
runtime assertion checking.
The main disadvantage of this approach is that the original
program code is changed by the preprocessor, i.e., line numbers
of compiler errors do not actually fit the line numbers of the
program. The same problem arises with debugging or runtime
exceptions. Another disadvantage from the performance point of
view is that the existing/original source code undergoes the entire
compilation path (excluding code generation) twice, thus
increasing the compilation time.

7.2 Incremental Approach
The next approach called the Incremental Approach works on the
same fashion as the Double-round approach. However this time,
the RAC Code Generator generates only the runtime assertion
checking code and sends only the rac code to the scanner. It stores
the context to which the new AST trees would be binded. This
flow is depicted through the red dotted line in figure 6, where
only new runtime assertion checking code would be scanned,
parsed, analysed. After static analysis the new AST tree would be
mutated to the original AST tree. This would give us a combined
AST that in turn we can send to the code generation component
for generating .class file. We could actually implement this
approach by examining in closer detail how the different
components interact with AST and how they deal with Type
Bindings. A key component of this interaction is the separation of
the formation of AST nodes and Binding them to their ParentAST
node. The knowledge of building the types enables us to use the
existing facility in Eclipse for combining a RAC AST into the
original AST.
Currently, due to the complexity of Eclipse architecture, we have
not yet figured it how to extend and refractor the existing
architecture so that it still fulfills our goals and make this
approach feasible. We must also say that the Eclipse framework
does not compile snippets of code by itself. The unit of
incrementation by Eclipse framework is a file.

Figure 6. Double-round compilation in Eclipse

7.2.1 Discussion
The main advantage of this approach is we still achieve to
separate programming logic from contracts. In addition, we
believe that the computation time would be greatly reduced. The
reason behind this is that even though it goes through the
compilation phases for a second time, it only compiles the added
code. The only reason for an increase in time in this approach
would be the time taken to merge the two ASTs.
However it still suffers similar to the previous method. The
original program code is changed by the preprocessor, i.e., line
numbers of compiler errors do not actually fit the line numbers of
the program. The same problem arises with debugging or runtime
exceptions. However, presently the most difficult part of this
approach is how to merge the two ASTs.

7.3 Byte Coding Weaving Approach
This approach is possibly one of the solutions to the above
problem i.e. the difficulty in compiling only a portion of the code
namely runtime assertion checking code in the context of the
original source code. This approach takes totally a different path
altogether. It does not go through the complexity of merging the
AST nodes. In this approach, after static analysis, the flow
branches out into two paths. One is the original path to code

generation and other to a new component called “RAC code
Generator”. It takes declared parse tree as an input to this
component. This component generates only runtime assertion
checking source code and further sends this source code back to
the compilation phases. Unlike, the JML2 approach, in this
approach only the runtime assertion checking code is compiled.
Having compiled, the code generator generates the corresponding
bytecode. After this bytecode has been generated, we can use
weaving technique to manipulate and merge the byte code of the
runtime assertion check to the original source code.

7.3.1 Discussion
The advantage of this approach is that direct bytecode
manipulation would alleviate the problem of merging ASTs. Our
assumption is that bytecode manipulation would be easier to
implement than merging two ASTs. In comparison to the
incremental approach, less of code refactoring is done. This helps
us to maintain the Eclipse JDT framework. Another distinct
advantage over Double Round approach, is the time factor. We
presume that even though in this approach we travel twice in the
compilation path, the time taken for compilation would be less
because in the second round only the new runtime assertion
checking code would be compiled.
One major problem, is the feasibility of whether such an approach
is actually possible. Currently we are doing a feasibility study.
The main concern is how easy (from the implementation point of
view) would be to actually manipulate byte code. Another
concern, is whether it would be possible to resolve the different
type-bindings between two such bytecodes.

7.4 AspectJ Approach
We have not yet started working for this approach. However we
think that this approach would help us to achieve our design
goals.

8. IMPLEMENTATION STRATEGY
The above approaches have been implemented into the Eclipse
architecture taking care such that only public APIs are changed.

8.1 Double Round Approach
Following the discussions above, we can proceed to implement
the JML2 approach as per the following steps –
 • We require to make a call to Preprocessing()
component which actually process the runtime assertion code and
the original source code. This call is made before the actual
generation of byte code. This method takes in the existing CU
and returns a new CU which is in Intermediate Representation
format, compliant for direct bytecode generation. Appendix A-1
illustrates how the method Preprocessing() is inserted into
the existing process() method in Compiler.java.
 • In the Preprocessing() method, the new compilation
unit so generated would require to go through the same steps as
the original source code had gone. In Appendix A-2 the body of
the method is shown. This method calls another method in
Parser.java class which actually creates the new runtime assertion
checking code and merges with the previous source code to get a
new source code.
 • Another component needs to be added in the Parser.java class.
This component named addWrapperMethods() actually

injects new wrapper methods into the existing source code. For
this time, we have hand-coded the generation of new wrapper
methods. This would be automated in the later stages. However,
this automation is possible, as shown in [11] dissertation thesis.

Figure 7. ByteCode weaving approach

8.1.1 Discussion
The changes that has been incorporated in this approach, into the
Eclipse framework have been done in confirmation to the Eclipse
community as well as the JML group. New code has been
essentially written only in two packages –
 • org.eclipse.jdt.core/compiler/org/eclipse
/jdt/internal/compiler
 • org.eclipse.jdt.core/compiler/org/eclipse
/jdt/internal/compiler/parser

Another aspect was the addition of minimal extension points. In
this approach we have added just one extension point.

8.1.2 Conformance to Design Goals
The newly added code very much adheres to the design goals.
They are simple and modular. It is modular because the new
components are very much separate from each other. That is, the
component Preprocessing only preprocesses the new CU, while
addWrapperMethods actually adds runtime assertion checking
code into the original source code. It also conforms to the
Proportionality goal – it required a small extension and we indeed
did this by just adding 17 lines of code into the existing
architecture. These 17 lines are responsible for the double-round
compilation technique. Since the design was itself modular and
the extension point has been kept to just 1, analysis can easily be
done into the new architecture, as if no change has been done to
the existing Eclipse framework at all.

8.2 Incremental Approach
Currently we have not been able to implement this approach and
integrating it with the Eclipse JDT framework. As we had
explained previously, that this approach primarily talks about
compilation only of the RAC code (during the second compilation
path). This means we require to parse, bind and static analysis this
code on the context of the actual source code. The reason for our
inability to implement this approach is that Eclipse JDT
framework does not support incremental compilation at the
method or more grainer level. Eclipse supports incremental
compilation at the class level.
One approach towards finding a solution is to somehow (which
we need to find) tell the ASTParser class under which context
should it be typed into. This would help us in merging the two
ASTs. Once we can get these two ASTs we can easily generate
the bytecode for it using the generate() method provided by
Eclipse framework itself.

8.3 Byte Coding Weaving Approach
Currently we are undergoing an extensive study on this approach,
that would enable us to gather sufficient knowledge which would
help us to implement this approach. Some current methods
available are BCEL, ASM, etc. We are currently studying them,
and in future we may also come up with our own Byte code
Manipulation tool. This is primarily because the available tools
may not suite our need completely, and by making our own tool
we may not depend on a third party plugin tool.

9. BYTE CODE ARCHITECTURES
This section discusses about the several approaches through
which we can actually finalize the internal format of runtime
assertion checking code. Method specifications are translated into
runtime assertion checking code following some steps. The last
step is the attaching of assertion checking code to the original
code. This step is for injecting the assertion checking code into
the appropriate place of the original code.
How is the assertion checking code injected into a method so that,
for example, the method's pre- and post conditions are checked
before and after the execution of the method body? There are
three possibilities viz. in-line approach, a wrapper approach and a
semi- wrapper approach. .

9.1 In-line Approach
An in-line assertion, also called an intracondition, is an assertion
that can be specified in the method body. In this approach, the
assertion checking code is inserted directly into the body of the
method being checked. For example, the precondition checking
code becomes the first statement (or a block of code) of the
method body. In JML, an in-line assertion is treated as a
statement, and thus can appear where a Java statement is allowed.
JML provides several kinds of in-line assertions, such as assert
statements, assume statements, hence by statements, unreachable
statements, set statements, and loop in-variant and variant
statements.

9.1.1 Importance
JML statements like assert, assume, hence_by, etc. can be realized
better using In-line approach. An assert statement is a
specification statement containing a boolean expression that must
hold when the control reaches the statement. An assume statement
is a specification statement that specifies an assumption that the
programmer makes on the program state when the control reaches
the statement. In-line approach is best used for those JML
statements which are statement specific. This approach is simple
and efficient; it does not incur extra method calls for assertion
checking. Another very important use of in-line assertions are to
check the preservation of properties specified by type assertions
from client-visible state. This is achieved by injecting assertion
checking code directly into the client code for each reference of
public fields.

Figure 8. Translation of assert and assume JML statements

9.1.2 Short-comings
The in-line approach has two shortcomings. First, it is not trivial
to inject assertion checking code of the post-state assertions such
as normal and exceptional postconditions, invariants, and history
constraints. The assertion checking code may not be added at the
end, because the method body may have return statements.
Second, the approach does not facilitate a modular way of
implementing specification inheritance. The assertion checking
code cannot be inherited by subclasses, as it is embedded into the
method body. For subclasses, assertion checking code must be
regenerated or textually copied down from superclasses and
implemented interfaces (which may need renaming and other
modifications).

9.2 Wrapper Approach
A wrapper approach is used to check method specifications. Each
method is transformed into a private method, and instead a new
wrapper method is generated with the same name and signature.
As a result, all client calls to the original method now go to the
wrapper method. The wrapper method is responsible for
transparently checking method specifications. For this, the
wrapper method delegates client calls to the original method
wrapped with appropriate assertion checking. It calls pre-state
assertion methods such as preconditions and pre-state invariants
before delegating the method call; it calls post-state assertion
methods such as postconditions, post-state invariants, and
constraints, after delegating the method call. This new wrapper
method is created as a separate class. From the client point of
view, this has the effect of checking pre-state assertions in the
pre-state and post-state assertions in the post-state.

Figure 9. Conceptual understanding of Wrapper approach

9.2.1 Importance
The wrapper approach is better structured and organized as the
instrumented code is modularized with wrapper methods and
assertion checking methods. The approach also facilitates
specification inheritance; a subclass can call the corresponding
assertion checking methods of its superclasses to inherit
specifications.

9.2.2 Short-comings
The only disadvantage of wrapper approach is its performance
and space issues. Due to several calls of different wrapper
methods, compilation-time of the code increases. Due to addition
of our own wrapper methods and creating new .class files, the size
also increases a lot, in comparison to the in-line approach.
Another short coming of this approach is, the implementation of
statement- specific JML statements like assert, assume, is very
difficult.

9.3 Semi-Wrapper Approach
One major difficulty is to the synchronization between two or
more class files, due to generation of neew class files for wrapper
methods. From the above discussion we can very well conclude
that implementing our JML RAC using any of the above two
approaches would be difficult. Hence, we propose a third
approach – a hybrid approach which implements wrapper
approach in in-line style. In this approach we create new wrapper
methods and embed them into the original source code itself.
Thus we do not create a new class file for the wrapper methods.

9.3.1 Importance
Since this approach is possibly an improvement than the wrapper
approach: it benefits from the pitfalls of it. Since we have been
able to negate the extra overhead between different files this
potentially increases the performance.

9.3.2 Short-comings
However it still falls short in coming up with an approach that
would enable us to not only decrease computation time but also
the compiled size code. This approach still has overhead which in
reality increases the time complexity and compiled size code.

10. EVALUATION
We would be evaluating the proposed architectures against our
design goals and the RAC features. We would be creating
prototypes for the proposed architecture. We should also create
exhaustive test cases that we can test against the individual
prototypes. The results from the test runs and static analysis
would help us to come up with one architecture which would help
us to achieve our Designed Goals.

11. CONCLUSION
In this paper, we have outlined a strategy for extending eclipse
framework to incorporate JML. In particular use runtime assertion
checking on eclipse platform. This strategy is not without
challenges, however. Two of the more troublesome are finding
the right extension points and minimal change in the actual
eclipse source code. The architecture that would be eventually
chosen must adhere to certain specific criteria.

Acknowlegements
We gratefully acknowledge the support extended from
Dr.Yoonsik Cheon, research advisor who has always guided us
whenever we were stuck with a problem.

12. REFERENCE
 [1] Patrice Chalin, Perry R. James, and George Karabotsos. An
Integrated Verification Environment for JML: Architecture and
Early Results. Sixth International Workshop on Specification and
Verification of Component-Based Systems (SAVCBS 2007), pages
47-53, September 2007.
[2] G. T. Leavens, “The Java Modeling Language (JML)”:
http://www.jmlspecs.org, 2007.
[3] L. Burdy, Y. Cheon, D. R. Cok, M. D. Ernst, J. R. Kiniry, G.
T. Leavens, K. R. M. Leino, and E. Poll, “An Overview of JML
Tools and Applications”, International Journal on Software Tools
for Technology Transfer (STTT), 7(3):212-232, 2005.

[4] C. A. R. Hoare. An axiomatic basis for computer
programming. Communications of the ACM, 12(10):576{583,
October 1969.
[5] Jurgen F.H. Winkler and Stefan Kauer. Proving assertions is
also useful. ACM SIGPLAN Notices, 32(3):38{41, March 1997.
[6] Brian W. Kernighan and Dennis M. Ritchie. The C
Programming Language. Prentice-Hall, Inc., Englewood Cli®s,
N.J., 1978.
[7] Margaret A. Ellis and Bjarne Stroustrup. The Annotated C++
Reference Manual. Addison-Wesley Publishing Co., Reading,
Mass., 1990.
[8] Bjarne Stroustrup. The C++ Programming Language: Third
Edition. Addison-Wesley Publishing Co., Reading, Mass., 1997.
[9] Bertrand Meyer. Applying \design by contract". Computer,
25(10):40{51, October 1992.
[10] Bertrand Meyer. Object-oriented Software Construction.
Prentice Hall, New York, NY, second edition, 1997.
[11] Yoonsik Cheon. A Runtime Assertion Checker for the Java
Modeling Language. Department of Computer Science, Iowa
State University, TR #03-09, April 2003.
[12] R.P.Tan, S.H.Edwards. An Assertion Checking Wrapper
Classes for Java. SAVCBS’ 03 Helsinki, Finland.
[13] F. Oquendo. Formally modeling software architectures with
the UML 2.0 profiles for π-ADL, ACM SIGSOFT Software
Engineering Notes, 31(1):1-13, January 2006.
[14] A framework for software maintenance metrics Pfleeger,
S.L.; Bohner, S.A. Software Maintenance, 1990., Proceedings.,
Conference on Volume , Issue , 26-29 Nov 1990 Page(s):320 -
327
[15] Dijkstra, E. W. Self-stabilization in spite of distributed
control. In Selected Writings on Computing: A Personal
Perspective. Springer-Verlag, New York, 1982, pp. 41–46.
[16] D. R. Cok and J. R. Kiniry, “ESC/Java2: Uniting ESC/Java
and JML”. In G. Barthe, L. Burdy, M. Huisman, J.-L. Lanet, and
T. Muntean editors, Proceedings of the International Workshop
on the Construction and Analysis of Safe, Secure, and
Interoperable Smart Devices (CASSIS'04), Marseille, France,
March 10-14, vol. 3362 of LNCS, pp. 108-128. Springer, 2004.
[17] J. van den Berg and B. Jacobs, “The LOOP compiler for Java
and JML”. In T. Margaria and W. Yi editors, Proceedings of the
Tools and Algorithms for the Construction and Analysis of
Software (TACAS), vol. 2031 of LNCS, pp. 299-312. Springer,
2001.
[18] Robert Bruce Findler and Matthias Felleisen. Contract
soundness for object-oriented languages. In OOPSLA '01
Conference Proceedings, Object-Oriented Programming,
Systems, Languages, and Applications, October 14-18, 2001,
Tampa Bay, Florida, USA, pages 1-15, October 2001.
[19] J. Gosling, B. Joy, G. Steele, and G. Bracha, The Java
Language Specification, 3rd ed. Addison-Wesley Professional,
2005.

APPENDIX A-1

/**
 * Process a compilation unit already parsed and build.
 */
 public void process(CompilationUnitDeclaration unit, int i) {

 this.lookupEnvironment.unitBeingCompleted = unit;

 this.parser.getMethodBodies(unit);

 // fault in fields & methods
 if (unit.scope != null)
 unit.scope.faultInTypes();

 // verify inherited methods
 if (unit.scope != null)
 unit.scope.verifyMethods(lookupEnvironment.methodVerifier());

 // type checking
 unit.resolve();

 // <jml-start id="6" />
 if (this.options.jmlEnabled) {
 this.jmlSourceLookup.mergeWithSourceAndSpec(unit);
 }
 // <jml-end id="6" />
 // flow analysis
 unit.analyseCode();

 // Second time-processing for RAC
 Unit = Preprocessing(unit);

 // <jml-start id="extension" />

 if (this.options.jmlEnabled)
 CompilerExtension.preCodeGeneration(this, unit);

 // <jml-end id="extension" />

 // code generation
 unit.generateCode();

 // <jml-start id="6" />
 if (this.options.jmlEnabled && this.options.jmlNullityCountsEnabled) {
 CompilationUnitScope scope = null; //new CompilationUnitScope(unit,
this.lookupEnvironment));
 unit.traverse(new ReferenceCounterVisitor(this.problemReporter), scope);
 }
 // <jml-end id="6" />
 // reference info
 if (options.produceReferenceInfo && unit.scope != null)
 unit.scope.storeDependencyInfo();

 // finalize problems (suppressWarnings)
 unit.finalizeProblems();

 // refresh the total number of units known at this stage
 unit.compilationResult.totalUnitsKnown = totalUnits;

 this.lookupEnvironment.unitBeingCompleted = null;
 }

APPENDIX A-2

/**

 * Process a new compilation unit for second time processing for RAC
 */

 public CompilationUnitDeclaration Preprocessing(CompilationUnitDeclaration
currentUnit){

 CompilationUnitDeclaration newUnit = null;
 newUnit = this.parser.addWrapperMethods(currentUnit);

 lookupEnvironment.buildTypeBindings(newUnit, null);
 lookupEnvironment.completeTypeBindings();

 // Update in the lookupEnvironment that the unit being completed is the new
Unit
 this.lookupEnvironment.unitBeingCompleted = newUnit;

 this.parser.getMethodBodies(newUnit);

 // fault in fields & methods
 if (newUnit.scope != null)
 newUnit.scope.faultInTypes();

 // verify inherited methods
 if (newUnit.scope != null)
 newUnit.scope.verifyMethods(lookupEnvironment.methodVerifier());

 // type checking
 newUnit.resolve();

 // <jml-start id="6" />

 if (options.jmlEnabled) {
 jmlSourceLookup.mergeWithSourceAndSpec(newUnit);
 }
 // <jml-end id="6" />

 // flow analysis
 newUnit.analyseCode();

 // replace the new Unit from the current unit
 this.unitsToProcess[0] = newUnit;

 return newUnit;
 }

/*
 * Adds new Wrapper methods for implementation of RAC
 */
public CompilationUnitDeclaration addWrapperMethods(CompilationUnitDeclaration
sourceUnit){
 CompilationUnitDeclaration unit;
 CompilationResult compilationResult = sourceUnit.compilationResult;
 try {
 /* automaton initialization */
 initialize(true);
 goForCompilationUnit();

// unit creation
 this.referenceContext =
 this.compilationUnit =
 // <jml-start id="nnts" />
 // TODO: this might go away when default nullities are moved to type
declarations
 new JmlCompilationUnitDeclaration(
 // <jml-end id="nnts" />

 this.problemReporter,
 compilationResult,
 0);
 /* scanners initialization */
 char[] contents;
 try {
 contents = compilationResult.compilationUnit.getContents();

 // convert to string format for easy manipulation
 String sourcecode = CharOperation.charToString(contents);
 int cut = sourcecode.lastIndexOf("}");
 String substring = sourcecode.substring(0, cut);
 String newString = "public void checkPre$m(int x){\n" +
 "if(!(x>0)){\n" +
 "\t throw new Error(\"Precondition Failure\");}" +
 "}\n" +
 "public void checkPost$m(int x){\n" +
 "if(!(x>5)){\n" +
 "\t throw new Error(\"Postcondition Failure\");}" +
 "}\n" +
 "public int $m(int x){\n" +
 "\t checkPre$m(x);\n" +
 "\t int retValue = m(x);\n" +
 "\t checkPost$m(x);\n" +
 "\t return retValue;}\n" +
 "}"; // for the main class
 substring = substring + newString;

 //Replacing some characters
 substring = substring.replaceAll("public int m", "private int m");
 substring = substring.replaceAll("jmlObject.m", "jmlObject.\\$m");
 System.out.println(substring);
 contents = substring.toCharArray();
 } catch(AbortCompilationUnit abortException) {

 this.problemReporter().cannotReadSource(this.compilationUnit,
abortException, this.options.verbose);
 contents = CharOperation.NO_CHAR; // pretend empty from thereon
 }
 this.scanner.setSource(contents);
 /* run automaton */
 parse();
 } finally {
 unit = this.compilationUnit;
 this.compilationUnit = null; // reset parser
 // tag unit has having read bodies
 if (!this.diet) unit.bits |= ASTNode.HasAllMethodBodies;
 }
 return unit;
}

APPENDIX A-3
SPECIFICATIONS DETAILED DESCRIPTION JML STATEMENTS JML2

behavior Y
normal behavior Y

Heavyweight & Lightweight Specifications

exceptional behaviour Y
public Y

protected Y
package-visible Y

Privacy of Method Specifications

private Y
public Y

protected Y
package-visible Y

Privacy of Type Assertions

private Y
Preconditions requires Y

Normal Post condition ensures Y
Exceptional Post condition signals Y

Frame Conditions assignable Y
Redundancy _redundantly Y

Specification Case also Y
Nested Specification Y

Syntactic Sugars

Desugaring Specification Y
Demonic Y Undefinedness Problem
Angelic Y

Universal Quantifiers for all Y
Existential Quantifiers exists Y

Generalized Quantifiers sum, product, min, max Y
Numeric Quantifiers num of Y

Quantified Expression

Set Comprehension new T Y
Assertions, Assumptions assert, assume, hence_by Y
Unreachable Statements unreachable Y

Set Statements sets Y
Loop Invariants maintaining Y

Inline Assertions

Loop Variants decreasing Y
Implicit Y Constructors
Explicit N

Finalizers Y
Helper Methods Y

Static L Type Invariants
Instance L

Static L
Instance L

Old Expression L
Nested Method Calls L
Universal Constraint L

Type Constraints

Method Specific Constraints L
Specifications for Interfaces Y

Strong Behavioral Subtyping Y
Weak Behavioral Subtyping Y

Inheritance of Specifications

Multiple Inheritance Y
Inheritance of Instance Invariants Y

Inheritance of Instance Constraints Y
Inheritance of Interface Specification Propagating Assertion calls to Super Interfaces Y

Inheritance Y
Interface Model Fields Y

 Model Fields

Interface Model Fields Inheritance Y
Inheritance Y

Interface Ghost Fields Y

Ghost Field
Interface Ghost Fields Inheritance Y

Model Methods Y
Refinement refine N

Model Program N
Time and Space reqs. in concurrent programs N

duration N

Non Functional Properties
working space N

Concurrency Aspects of Programs Synchronization when N
accessible N Subclassing
callable N

Example Specification N
Termination N
Initializers N

Model Classes N
Model Interface N

	TechnicalReport1.doc
	1. INTRODUCTION
	2. BACKGROUND
	2.1 Runtime Assertion Checking
	2.2 Extensible Compiler Construction
	2.2.1 Modularity
	2.2.2 Scalability

	2.3 Abstract Syntax Tree
	2.3.1 AST class:
	2.3.2 ASTNode class
	2.3.3 ASTParser class
	2.3.4 ASTVisitor class

	2.4 Eclipse IDE
	
	
	Fig1. The AST hierarchy
	
	support for Java. Like all other Eclipse features, Java support is provided by a collection of plug-ins—called the Eclipse Java Development Tooling (JDT)—offering, among other things, a standard Java compiler and debugger. The JDT Core plug-in provides a JCK-compliant Java compiler with incremental recompilation, which allows high performance and scales up to large projects.
	Figure 2. The Eclipse Architecture showing the Eclipse SDK and RCP
	
	
	3. LIMITATIONS OF JML2
	
	3.1 Problem in Existing JML Infrastructure
	3.2 Performance & Size Issue

	4. OBJECTIVES AND GOALS
	4.1 Objectives
	4.2 Runtime Assertion Checking Features
	4.3 Design Goals
	1.1
	whose maintenance is assured by a developer base outside of the JML research community. However, this is not always the best approach, since existing compilers may not have been designed with extensibility as one of the main goals. Furthermore, they may be constrained to work with infrastructures which themselves are not easily extensible.
	4.4 Contributions

	5. JML RAC
	5.1 Assertion Blocks, Methods, and Classes
	5.2 Strategies for Assertion Support

	6. ECLIPSE JDT ARCHITECTURE
	6.1 Compilation Phases Overview
	6.2 Components of JDT
	6.2.1 Scanning
	6.2.2 Parsing
	6.2.3 Type Checking
	6.2.4 Flow Analysis

	6.3 Eclipse back-end Compiler

	7. PROPOSED TOOL ARCHITECTURES
	7.1 Double Round Approach
	7.1.1 Discussion

	7.2 Incremental Approach
	7.2.1 Discussion

	7.3 Byte Coding Weaving Approach
	7.3.1 Discussion

	
	7.4 AspectJ Approach

	8. IMPLEMENTATION STRATEGY
	8.1 Double Round Approach
	8.1.1 Discussion
	8.1.2 Conformance to Design Goals

	8.2 Incremental Approach
	8.3 Byte Coding Weaving Approach

	9. BYTE CODE ARCHITECTURES
	9.1 In-line Approach
	9.1.1 Importance
	9.1.2 Short-comings

	
	9.2 Wrapper Approach
	9.2.1 Importance
	9.2.2 Short-comings

	9.3 Semi-Wrapper Approach
	9.3.1 Importance
	9.3.2 Short-comings

	10. EVALUATION
	11. CONCLUSION
	12. REFERENCE

	Appendix.doc
	APPENDIX A.doc

