
A JML Compiler on Eclipse Platform 
Amritam Sarcar 

Dept. Computer Science, University of Texas, El Paso 
500 West University Avenue 

El Paso, TX - 79902  
1-325-513-5214 

amritamsarcar@yahoo.co.in 
   

ABSTRACT 
Java Modeling Language tools cover the full range of verification 
from runtime assertion checking (RAC) to full static program 
verification, with extended static checking (ESC) in between.  
Unfortunately, developers trying to do this must use separate 
applications and deal with problems like the tools accepting 
slightly different and incompatible variants of JML. This paper 
presents the architecture and design rationale behind a JML 
Compiler on Eclipse Platform, an extension of [1], with a more 
detailed and focused study on runtime assertion checking  

Categories and Subject Descriptors 
D.2.4 [Software Engineering]: Software/Program Verification—
programming by contract, assertion checkers, class invariants; 
F.3.1 [Logics and Meanings of Programs]: Specifying and 
Verifying and Reasoning about Programs—pre- and post-
conditions, invariants, assertions; D.2.3 [Software Engineering]: 
Coding Tools and Techniques—object oriented programming; 
D.3.2 [Programming Languages]: Language Classifications—
JML.  

General Terms 
Languages 

Keyword 
JML, run-time checking, design by contract. 

1. INTRODUCTION 
The Java Modeling Language (JML) is the most popular 
Behavioral Interface Specification Language (BISL) for Java. It is 
a formal specification language that can document detailed 
designs of Java classes and interfaces. RAC and ESC are the 
technologies which are most likely to be adopted by mainstream 
developers because of their ease of use and low learning curve.  
JML does not support the many new features of Java version 5, 
most notably generics. This inability to support current Java 
programs is limiting JML’s user base, decreasing user feedback, 
and lessening the impact of JML-based research. The Verified 

Software grand challenge identified the lack of extensible tools 
for formal methods research as a major impediment to 
experiments. 
Unfortunately, the current version, accepts different and 
incompatible variants of JML—sadly this is the case for 
practically all of the current JML tools. The reasons behind it are 
partly historical— 
    • the tools were developed independently, each having their 
own parsers, type checkers, etc. and  

• partly due to the rapid pace of evolution of both JML and 
Java.  

Not only does this last point make it difficult for individual 
research teams to keep apace, it also results in significant and 
unnecessary duplication of effort. For some time now the JML 
community has recognized that a consolidation effort with respect 
to its tool base is necessary. In response to this need, three 
prototypical “next generation” tools have taken shape: JML3, 
JML4, and JML5. This paper is a possible extension of JML4.  

Paper Structure. The structure of this paper is as follows. In 
section 2, we first give the background details of this project. 
Next in section 3 we sketch the limitations of existing JML tools. 
We then in section 4 elicit the objectives of the JML group in 
general and our goals for this project.  Next in section 5 we 
discuss about several approaches to translating assertions into 
runtime checking code. In the next section, we give an overview 
of the existing Eclipse architecture and that of the JML4. In 
section 7 we present our proposed architecture, which actually 
contains several approaches. Section 8 and 9 talks about the 
implementation and bytecode architecture. In section 10 we enlist 
the evaluation criteria/methods that we would employ.  

2. BACKGROUND 
In this section we give a brief introduction to runtime assertion 
checking, extensible compiler construction, abstract syntax tree 
and Eclipse IDE. 
 
2.1 Runtime Assertion Checking 
Assertions are formal facts about the state of a program; they are 
statements that are true at certain points in program code [4]. 
They are very useful for both debugging and proving correctness 
of programs [5]. There may be several ways to support assertions 
in programming languages, but one of the most popular 
approaches is to use macro statements that are expanded into 
appropriate program statements by preprocessors. The main 
examples are the assertion facilities of C [6] and C++ [7] [8] (e.g., 
the assert macro).Meyer promoted simple assertions into what is 
referred to as the design by contract (DBC) [9][10].  
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2.2 Extensible Compiler Construction 
While processing of programs is an old research topic, there are 
still plenty of opportunities for improvement when it comes to 
extensibility. This is particularly true for tools (like JML) that 
need to support full languages and process large bodies of code. 
Early stages in compilers such as scanning and parsing are well 
understood and there exists techniques for extensive 
specifications [2]. However in later stages, viz. name binding, 
type checking, and code optimization, they rely on context-
sensitive and are still often hand coded in an ad-hoc fashion with 
little support for extensibility (like Eclipse).  
2.2.1 Modularity 
Modularity is often used to describe the possibility to decompose 
a system into modules [14]. This allows each sub problem, or 
concern to be studied in isolation, a property which is known as 
separation of concerns [15]. There may be several decomposition 
criteria, all of which are desirable depending on the situation. 
Some of them are – 
    • Separate Computations The goal is to be able to reuse and 
combine the different computations to obtain different tools, and 
to express and understand each computation in isolation. 
    • Language Extension The goal is to be able to reuse the base 
language implementation for many different extensions, to 
combine extensions, and to be able to express and understand 
each extension in isolation. 
     • Language Specification The goal is to provide traceability 
between the language specification and the implemented 
compiler. 

2.2.2 Scalability 
It is important that a compiler technology is scalable both to full 
languages and large sized applications to be of practical use. 
Mainstream programming languages are often complex and 
contain many corner cases. Even small applications tend to use 
most language features in Java and fail to compile if only a subset 
is supported. It is also worth noticing that for a tool to be useful in 
an industrial setting it needs to be able to analyze code bases in 
the range of a hundred thousand lines of code or more. 
 
2.3 Abstract Syntax Tree 
The classes for the JDT’s internal AST are found in the 
org.eclipse.jdt.internal.compiler.ast package, 
where as the public version of the AST is (partly) reproduced 
under org.eclipse.jdt.core.dom. This comprises of the 
Abstract Syntax Tree (AST) for the Java language, as well as 
objects that perform operations on the AST. The knowledge of 
AST is required for us to better understand – where and how to 
merge (if necessary) our RAC generated AST with the existing 
AST (developed by the native compiler). 

2.3.1 AST class: 
The AST class is the owner of the AST. Any new AST nodes 
created by using an object of this class will be owned by that 
object. The class has two static fields that are used to specify 
which version of the Java Language Specification (JLS) should be 
used when parsing source code. AST.JLS2 refers to the second 
version of the JLS, while AST.JLS3 refers to the third version. 
The AST class also acts as a factory for producing ASTNode 

classes. A node of any type can be created using a method of the 
form newXXX where XXX is the name of the syntax element to 
be created. Each node that is created in this way does not have 
any type name or value specified. The node also has no parent. 
Finally, AST provides a utility method 
resolveWellKnownType(). This method takes in a String 
which names a well known type. It returns an ITypeBinding, 
which is an interface that represents a well known type.  

2.3.2 ASTNode class 
The ASTNode class is the superclass for the many AST node 
types. An ASTNode represents a syntactic element in the Java 
language. Each node has links to each of its children, as well as to 
its parent node. Therefore, the AST can be traversed either from 
the top down, or from the bottom up. In addition, each ASTNode 
object contains the range in the source file where the syntactic 
element can be found. The getStartPosition() method 
returns an index into the source file where the element starts, and 
the length() method returns the number of characters that 
comprise the element. 

2.3.3 ASTParser class 
The ASTParser class is responsible for converting source code 
into an AST. There are no constructors to use for this class. 
Instead a static factory method called newParser() is used to 
create a new ASTParser. The argument to this method specifies 
the level of the Java Language Specification to use. The 
setSource() method specifies the source to compile. The 
createAST() method will create the AST from the source that 
was given to the object. It returns an object of type ASTNode, 
which will represent the root of the produced AST. A useful 
method that this class provides is setProject(). This method 
takes in an IJavaProject object that is used to specify a Java 
project on the workbench.This Java project will be used to resolve 
types in the source string that otherwise could not be  resolved by 
the compiler.  

2.3.4 ASTVisitor class 
To perform operations on an AST, we use the ASTVisitor class. 
ASTVisitor is an abstract class. It provides two operations to be 
performed on every node of an AST. The visit() method 
returns true if the node has children that will be visited after the 
current node is visited. The endVisit() method is similar to 
visit() except that the children of the node will be visited 
before the node itself is visited. In addition to all the type-specific 
visit operations, there are two operations that perform work on an 
ASTNode in general, and not on specific types within the AST 
hierarchy. The preVisit() method is used to visit an 
ASTNode before the type-specific visit operation is called on that 
node. The postVisit() method visits the ASTNode after the 
type-specific visit operation on that node. 
 
2.4 Eclipse IDE 
Eclipse is a plug-in based application platform. Well known 
bundles of Eclipse plug-ins include the Eclipse Software 
Development Kit (SDK) and the Eclipse Rich Client Platform 
(RCP). While Eclipse is written in Java, it does not have built-in  
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig1. The AST 

hierarchy 

 

support for Java. Like all other Eclipse features, Java support is 
provided by a collection of plug-ins—called the Eclipse Java 
Development Tooling (JDT)—offering, among other things, a 
standard Java compiler and debugger. The JDT Core plug-in 
provides a JCK-compliant Java compiler with incremental 
recompilation, which allows high performance and scales up to 
large projects. 

 

Figure 2. The Eclipse Architecture showing the Eclipse SDK 
and RCP 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

3. LIMITATIONS OF JML2 
The first generation JML tools essentially consist of – 
   • Common JML tool suite—formerly the Iowa State University 
(ISU) JML tool suite—also known to developers as JML2, which 
includes the JML RAC compiler and JmlUnit [3],  
   • ESC/Java2, an extended static checker [16], and 
   • LOOP a full static program verifier [17]. 
Of these, JML2 is the original JML tool set. Although ESC/Java2 
and LOOP initially used an annotation language other than JML, 
they quickly switched to use JML. 
 
3.1 Problem in Existing JML Infrastructure 
Despite JML’s demonstrated potential, its inadequate 
infrastructure threatens its continued use in this role. The initial 
version of JML does not support sufficiently robust tools. 
JML2 was essentially developed as an extension to the multijava 
(MJ) compiler. By “extension”, we mean that 
• for the most part, MJ remains independent of JML  
• many JML features are naturally implemented by subclassing 
MJ features and overriding methods—e.g. Abstract syntax tree 
nodes with their associated type checking methods; 
• in other situations, extension points (calls to methods with 
empty bodies) were added to MJ classes so that it was possible to 
override behavior in JML2.  



The multijava compiler was not designed for extensibility; after 
much extension and refactoring to support JML it has become 
unwieldy and difficult to maintain. Extensibility is needed not just 
to track evolution in the programming language, but also to allow 
experimentation in specification language design. 
Version 5 of the Java language substantially extends Java with 
any additional features, most notably generics. No JML tool 
properly supports generics. The common JML Tools do not 
support other features of Java 5. Researchers want to evaluate 
their tools on current (Java 5) benchmarks. 
This puts great pressure on fundamental tool support: parsing and 
basic compiler infrastructure have to be frequently updated to 
track the language’s evolution. The first generation JML tools  are 
mainly command line tools, though some developers were able to 
make comfortable use of them inside Emacs, which in a sense, 
can be considered an early integrated development environment 
(IDE). In recognition of this, early efforts have successfully 
provided basic JML tool support via Eclipse plug-ins, which 
mainly offer access to the command line capabilities of the JML 
RAC or ESC/Java2. 
Another issue is practical adoption of building integrated 
development environments (Ides).  
 
3.2 Performance & Size Issue 
The existing JML2 tools, more importantly ‘jmlc’ the runtime 
assertion checker from the performance point of view is really 
very slow. The compilation time taken is huge compared to the 
compilation speed of ‘javac’. However, it is evident that since 
jmlc does more work than javac, it would take more time. The 
following graph depicts that the minimum time difference 
between the two compilation tools is ~700%, whereas the average 
time difference is ~930%. The JML group at large had not forseen 
such an enormous difference.  
 

 
 
On compilation, another important criteria is the bytecode size. 
This becomes of utmost importance when space is of prime 
importance. In this graph too, we see a huge difference in terms of 
%difference between the size of the compiled code. The 
maximum difference is almost 7000 percent. That is, about 70 
times the size of a .class file compiled using javac.  
The results however need to be further reviewed to come to a 
proper conclusion.  
This paper focuses to come up with such an architecture which 
would help us to decrease time and size of the compiled code. 

 

 
4. OBJECTIVES AND GOALS 
In this section we elicit the objectives behind JML4 and a possible 
extension to it. We also present the goals of this project. 
 
4.1 Objectives 
Resource constraints and architecture of the current tools of JML 
prevent their thorough integration into a development 
environment such as Eclipse. The tools are written in a tightly 
integrated way that is not flexible and extensible. Some of the 
objectives of JML group are – 
   • The infrastructure must be extensible. They must smoothly 
accommodate future changes to the Java programming language. 
   • The proposed software infrastructure must keep with the 
evolution of Java. It must support the features of Java 5 and Java 
6, and be extensible to future versions of Java. 
   • Allowing the language itself to be extensible implies that the 
tool architecture should also be modular and designed for 
extension. The modularity and extensibility of the architecture is 
very crucial. 
   • Apart from Eclipse, the software infrastructure should also be 
integrated to other Ides. 
 
4.2 Runtime Assertion Checking Features 
The JML group in their initial draft had come up with a 
comprehensive study on how to divide JML statements into 
different levels. This partitioning of features was mainly due to 
the complexity of understanding and usage from the user point of 
view. The table shown in Appendix A-3 provides us with  a 
feature table that would enable us to figure whether our prototype 
or architecture conforms to the basic and/or advanced needs to 
support primarily runtime assertion checking code. This code 
helps us to validate our proposed architecture against these 
features. 

4.3 Design Goals 
Since JML is essentially a superset of Java, most JML tools will 
require, at a minimum, the capabilities of a Java compiler front 
end. Some tools (e.g., the RAC) would benefit from compiler 
back-end support as well. Hence, an ideal solution would be to 
extend a Java compiler, already integrated within a modern IDE, 
 
 



 
whose maintenance is assured by a developer base outside of the 
JML research community. However, this is not always the best 
approach, since existing compilers may not have been designed 
with extensibility as one of the main goals. Furthermore, they 
may be constrained to work with infrastructures which themselves 
are not easily extensible.  
Our approach was to design and implement A JML Compiler on 
Eclipse Platform, with extensibility as its primary design goal. If 
the extension points can be judiciously chosen and kept to a 
minimum then the extra effort caused by developing on top of a 
rapidly moving base can be minimized.  
To support our objectives, we distilled the following requirements 
from the above discussion involved. 
   • Extensibility: The architecture so designed should support 
extensibility. The JML features should be incorporated into the 
Eclipse framework in such a manner so that minimum extension 
points are used so that the extensibility of Eclipse is not 
hampered. 
   • Simplicity: It must be relatively simple to develop new 
extensions. Users of the framework should not need to understand 
complicated new concepts or a complex software design in order 
to implement their extensions. 
   • Modularity: We require two kinds of modularity. First, the 
workbench itself should be very modular, so that the different 
facets of each extension can be easily identified with the correct 
module of the workbench. Second, the extension should be 
modular (separate from the workbench code). Users of the 
workbench should not need to touch existing code; rather, they 
should be able to describe the extensions as specifications or code 
that is separate from the main code base. 
   • Proportionality: Small extensions should require a small 
amount of work and code. There should not be a large overhead 
required to specify an extension. 
   • Analysis capability: The workbench infrastructure should 
provide both an intermediate representation and a program 
Analysis framework. This is necessary because some extensions 
may lead to a lot of runtime overhead unless compiler 
optimization techniques are used to minimize that overhead. 
Some of the other measurable goals that can be incorporated are 
Time and Space. We should be able to reduce time substantially 
than the former JML tools. For achieving so, we require to 
judiciously choose between our several architectural approaches. 
Another important criteria is the size of the compiled code must 
not be enormously high as in previous tools.  
 
4.4 Contributions 
The contributions of this paper are the following –  
   • We have identified the requirements for a workbench for 
extending JML tools by analysing previous research in this area. 
   • We present A JML Compiler on Eclipse Platform, an instance 
of such a workbench with a clean, extensible architecture. 
   • We have enlisted some key points, features of runtime 
assertion checker which would help us to validate our architecture 
against these requirements. 
   • The extensibility of Eclipse can be seen as a form of 
substantial exercise in extensible software development, with the 
primarily goal of disentangling features from the existing base 
compiler. 

 

5. JML RAC 
An essential requirement for runtime assertion checking is 
transparency; unless an assertion is violated and except for 
performance measures (time and space), the behavior of the 
original program should be unchanged. Another requirement is 
that runtime assertion checking should reflect the semantics of 
JML. It should be sound in that it does not produce any false 
positives [18]. The runtime assertion checker should also strive to 
detect as many potential errors – inconsistencies between 
specifications and code – as possible; ideally, it should be 
complete in that it detects all such errors. 
 
5.1 Assertion Blocks, Methods, and Classes 
An important design dimension is to define the structure of 
runtime assertion checking code and the way it interacts with 
other assertion checking code and the code being checked. There 
are several possibilities in organizing assertion checking code: 
   • Blocks of Java statements: A specification may be translated 
into a sequence of Java statements, called an assertion checking 
block or assertion block for short. The assertion block may be 
injected into the appropriate position in the method body. 
   • Separate methods: An assertion checking block may become a 
separate method of the class being checked, called an assertion 
checking method or an assertion method for short. To check an 
assertion, the assertion method is called in place of the assertion 
block. 
   • Separate classes: The assertion methods, instead of being 
members of the class being checked, may form a separate class, 
called an assertion checking class or an assertion class for short. 
To check an assertion, an assertion object is created and an 
appropriate assertion method is called on the assertion object. 
 
5.2 Strategies for Assertion Support 
Assertions may be specified at the class level (invariants) or on 
the method level (preconditions and postconditions). A number of 
systems exist for the Java programming language that support 
assertion techniques in different ways. The goal of this section is 
to describe different possible approaches for supporting contracts 
for the Java programming language. Generally three different 
approaches are possible: 
   • Built in/Compilation-based approach: This means that support 
for contracts is directly included in the programming language. 
The programming language contains language constructs to 
formulate assertions in one way or another. The syntactical 
correctness of assertions is checked directly by the compiler. In 
addition a runtime environment must be available to perform the 
runtime assertion checks. Ideally the runtime environment is 
flexible enough to allow a very fine-grained control of the 
assertion checking mechanism, i.e., it should be possible to 
selectively enable and disable assertion checking. The main 
advantage of this approach is the homogeneous integration of 
assertions into the programming language, i.e., compiler error 
messages are consistent, debugging tools can properly consider 
assertions (e.g., correct line numbers and stack traces).  
   • Preprocessing: This is the most popular kind of support for 
assertions in a programming language. The general idea is to 
formulate assertions separate from the program or to include the 



assertions as comments. A preprocessor is used to weave the 
assertions into the program or to transform the comments 
containing assertion formulas into programming language code. 
The main advantage of this approach is the separation of 
programming logic and contracts. This is important in cases, 
where the programming language itself does not support 
assertions and the programming language must not be altered for 
various reasons (e.g., conformance to standards, not enough 
knowledge available for changing the compiler). The main 
disadvantage of this approach is that the original program code is 
changed by the preprocessor, i.e., line numbers of compiler errors 
do not actually fit the line numbers of the program. The same 
problem arises with debugging or runtime exceptions. 
   • Meta-programming: Programs that have the possibility to 
reason about themselves have so called reflective capabilities. The 
Java programming language, e.g., has reflective capabilities and 
may access information about elements of a Java program by 
means of a reflection API. The main advantage of meta-
programming approaches is that no specialized preprocessor has 
to be used but the native compiler. Nevertheless a specialized 
runtime environment has to be used to enable assertion checking. 
   • Byte Code Manipulation: Another approach for languages 
based on virtual machines, such as Java, is to manipulate the 
virtual machine's bytecode to inject assertion checking code. The 
manipulation can be done either at compile time or loading time, 
e.g., using a customized class loader.  
 
 
 
 
 
 
 
 
 
Figure 3. Built in approach to runtime assertion checking. 
 
In JML, the compilation-based approach is adopted, as it is an 
intuitive and easy-to-use approach (see Figure 3). JML compiler 
is essentially a Java compiler with additional capability of 
translating JML specifications into automatic runtime checks. 
 

6. ECLIPSE JDT ARCHITECTURE 
Before we discuss about the Eclipse Architecture in detail, we 
present some of the issues that are inherent about Eclipse. Eclipse 
does not create applications with true Java functionality. 
Developers must port the SWT to all platforms on which Eclipse 
runs, which can be complex, time consuming, and expensive.  
The main packages of interest in the JDT are the ui, core, and 
debug. As can be gathered from the names, the core (non-UI) 
compiler functionality is defined in the core package; UI 
elements and debugger infrastructure are provided by the 
components in the ui and debug packages, respectively.  
One of the rules of Eclipse development is that public APIs must 
be maintained forever. This API stability helps avoid breaking 
client code. The following convention was established by Eclipse 
developers: only classes or interfaces that are not in a package 
named internal can be considered part of the public API.  
 

6.1 Compilation Phases Overview 
The main steps of the compilation process performed by JDT are 
illustrated in Figure 4. In the Eclipse JDT (and also in JML4), 
there are two types of parsing: in addition to a standard full parse, 
there is also a diet parse, which only gathers signature information 
and ignores method bodies. When a set of JML annotated Java 
files is to be compiled, all are diet parsed to create (diet) ASTs 
containing initial type information, and the resulting type 
bindings are stored in the lookup environment. Then each 
compilation unit (CU) is fully parsed. During the processing of 
each CU, types that 
are referenced but not yet in the lookup environment must have 
type bindings created for them. This is done by first searching for 
a binary (*.class) file or, if not found, a source (*.java) file. 
Bindings are created directly from a binary file, but a source file 
must be diet parsed and added to the list to be processed. In both 
cases the bindings are added to the lookup environment. Finally, 
flow analysis and code generation are performed. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4. JDT compilation phases. 

 
6.2 Components of JDT  
This section describes very briefly the most important 
components of the JDT compilation phases. 



6.2.1 Scanning 
Scanning of source code is done at a much later stage than 
anticipated. When each CU is diet parsed by invoking the 
DietParse() method, it in turn calls the Scanner() method 
which actually scans the source code that is linked/bounded to the 
CU.   

6.2.2 Parsing 
The JDT’s parser is auto-generated from a grammar file (java.g) 
using the Jikes Parser Generator (JikesPG) and a custom script 
that resides at org.eclipse.dt.core/scripts. The grammar 
file, java.g, closely follows the Java Language Specification[19] 
 

6.2.3 Type Checking 
Type checking is performed by invoking the resolve() method 
on a compilation unit.  

6.2.4 Flow Analysis 
Flow analysis is performed by the analyseCode() method on a 
compilation unit. 
 
6.3 Eclipse back-end Compiler 
Contrary to popular belief, the Eclipse framework has just one 
back-end compiler support. This section discusses the overall 
interaction between the command-line tools, GUI and the 
compiler. Figure 5 illustrates the interactivity between the 
different APIs. The command line API (at an abstraction level) 
contains 3 methods basically. The main() method is the starting 
point of interaction with Eclipse via command prompt. It receives 
the arguments and in turn invokes the compile() method. This 
method decodes the command line arguments and call the 
performCompilation() method. This method initializes the 
Batch.Compiler to its default settings and passes the 
CompilationUnits denoted as CUs to 
internalBeginToCompile() method, which basically is 
the starting point of the compiler API.            
In GUI case, on invoking the Eclipse framework, several threads 
concurrently starts, of which the run thread is invoked from 
org.eclipse.core.internal.jobs.Worker.run() 
method. This run thread in turn calls the build() method in the 
BuildManager class. This invokes the basicbuild() method. 
If the user now, writes some code and builds/saves it, 
automatically builddeltas() method is invoked. This 
method tells the framework only those resources that have 
changed since the last build need to be considered for 
compilation. The delta only tells you the file was changed. If any 
delta is found, they are send to incrementalbuild() 
method, which  in turn invokes incrementalcompiler() 
method. This method identifies which CU is to be built. And then 
sends this to the jdt.compiler class. 

 
Figure 5. Interaction between command-line tools, Eclipse 

GUI and the backend compiler. 
 

7. PROPOSED TOOL ARCHITECTURES 
The new proposed architecture has several alternatives. Each of 
them is presented below. 
 
7.1 Double Round Approach 
The JML2 runtime assertion checking method[11] has been 
implemented in the context of Eclipse Architecture. The approach 
for implementing the JML RAC compiler is to reuse the existing 
source code of JML and Eclipse tools as much as possible, if 
necessary, by refactoring it. The Eclipse type checker and its 
underlying Java compiler provide a good code base for the JML 
RAC compiler. They consist of several compilation passes. Our 
idea is to introduce new compilation passes to generate assertion 
checking code, and to rewire the whole compilation passes to 



generate bytecode for both the original and assertion checking 
code. 
Ideally, we would like to have a minimal duplication of 
compilation passes. However, the complexity of assertion 
checking code and the infrastructure of existing tools make such 
an optimal solution difficult, and which lead us to a strategy, 
called double-round compilation[11]. Figure 5 shows the 
architecture of the Eclipse compiler. The original path of Java file 
not annotated with JML specifications would flow through 
Scanner, Parser, and then to Static analysis and code generation.  
To implement the double-round compilation strategy, we added a 
new compilation pass “RAC code” after the typechecking and 
static analysis pass. This pass generates runtime assertion 
checking code from the typechecked abstract syntax tree. It 
generates actual source code and then combines with the existing 
source code. This newly generated code is again sent through the 
compilation phases for the second time. This time it directly goes 
from static analysis to code generation as depicted using the red 
dotted lines.  

7.1.1 Discussion 
The main advantage of this approach is the separation of 
programming logic and contracts. It is the simplest approach for 
runtime assertion checking.          
The main disadvantage of this approach is that the original 
program code is changed by the preprocessor, i.e., line numbers 
of compiler errors do not actually fit the line numbers of the 
program. The same problem arises with debugging or runtime 
exceptions. Another disadvantage from the performance point of 
view is that the existing/original source code undergoes the entire 
compilation path (excluding code generation) twice, thus 
increasing the compilation time. 
 

7.2 Incremental Approach 
The next approach called the Incremental Approach works on the 
same fashion as the Double-round approach. However this time, 
the RAC Code Generator generates only the runtime assertion 
checking code and sends only the rac code to the scanner. It stores 
the context to which the new AST trees would be binded. This 
flow is depicted through the red dotted line in figure 6, where 
only new runtime assertion checking code would be scanned, 
parsed, analysed. After static analysis the new AST tree would be 
mutated to the original AST tree. This would give us a combined 
AST that in turn we can send to the code generation component 
for generating .class file. We could actually implement this 
approach by examining in closer detail how the different 
components interact with AST and how they deal with Type 
Bindings. A key component of this interaction is the separation of 
the formation of AST nodes and Binding them to their ParentAST 
node. The knowledge of building the types enables us to use the 
existing facility in Eclipse for combining a RAC AST into the 
original AST.  
Currently, due to the complexity of Eclipse architecture, we have 
not yet figured it how to extend and refractor the existing 
architecture so that it still fulfills our goals and make this 
approach feasible. We must also say that the Eclipse framework 
does not compile snippets of code by itself. The unit of 
incrementation by Eclipse framework is a file.  

 
Figure 6. Double-round compilation in Eclipse 

 

7.2.1 Discussion 
The main advantage of this approach is we still achieve to 
separate programming logic from contracts. In addition, we 
believe that the computation time would be greatly reduced. The 
reason behind this is that even though it goes through the 
compilation phases for a second time, it only compiles the added 
code. The only reason for an increase in time in this approach 
would be the time taken to merge the two ASTs.  
However it still suffers similar to the previous method. The 
original program code is changed by the preprocessor, i.e., line 
numbers of compiler errors do not actually fit the line numbers of 
the program. The same problem arises with debugging or runtime 
exceptions. However, presently the most difficult part of this 
approach is how to merge the two ASTs.  
 
7.3 Byte Coding Weaving Approach 
This approach is possibly one of the solutions to the above 
problem i.e. the difficulty in compiling only a portion of the code 
namely runtime assertion checking code in the context of the 
original source code. This approach takes totally a different path 
altogether. It does not go through the complexity of merging the 
AST nodes. In this approach, after static analysis, the flow 
branches out into two paths. One is the original path to code 



generation and other to a new component called “RAC code 
Generator”. It takes declared parse tree as an input to this 
component. This component generates only runtime assertion 
checking source code and further sends this source code back to 
the compilation phases. Unlike, the JML2 approach, in this 
approach only the runtime assertion checking code is compiled. 
Having compiled, the code generator generates the corresponding 
bytecode. After this bytecode has been generated, we can use 
weaving technique to manipulate and merge the byte code of the 
runtime assertion check to the original source code.  

7.3.1 Discussion 
The advantage of this approach is that direct bytecode 
manipulation would alleviate the problem of merging ASTs. Our 
assumption is that bytecode manipulation would be easier to 
implement than merging two ASTs. In comparison to the 
incremental approach, less of code refactoring is done. This helps 
us to maintain the Eclipse JDT framework. Another distinct 
advantage over Double Round approach, is the time factor. We 
presume that even though in this approach we travel twice in the 
compilation path, the time taken for compilation would be less 
because in the second round only the new runtime assertion 
checking code would be compiled.         
One major problem, is the feasibility of whether such an approach 
is actually possible. Currently we are doing a feasibility study. 
The main concern is how easy (from the implementation point of 
view) would be to actually manipulate byte code. Another 
concern, is whether it would be possible to resolve the different 
type-bindings between two such bytecodes. 
 
7.4 AspectJ Approach 
We have not yet started working for this approach. However we 
think that this approach would help us to achieve our design 
goals. 

8. IMPLEMENTATION STRATEGY 
The above approaches have been implemented into the Eclipse 
architecture taking care such that only public APIs are changed.   
 
8.1 Double Round Approach 
Following the discussions above, we can proceed to implement 
the JML2 approach as per the following steps – 
   • We require to make a call to Preprocessing() 
component which actually process the runtime assertion code and 
the original source code. This call is made before the actual 
generation of  byte code. This method takes in the existing CU 
and returns a new CU which is in Intermediate Representation 
format, compliant for direct bytecode generation. Appendix A-1 
illustrates how the method Preprocessing() is inserted into 
the existing process() method in Compiler.java. 
   • In the Preprocessing() method, the new compilation 
unit so generated would require to go through the same steps as 
the original source code had gone. In Appendix A-2 the body of 
the method is shown. This method calls another method in 
Parser.java class which actually creates the new runtime assertion 
checking code and merges with the previous source code to get a 
new source code.  
   • Another component needs to be added in the Parser.java class. 
This component named addWrapperMethods() actually 

injects new wrapper methods into the existing source code. For 
this time, we have hand-coded the generation of new wrapper 
methods. This would be automated in the later stages. However, 
this automation is possible, as shown in [11] dissertation thesis.  
 

 
Figure 7. ByteCode weaving approach 

8.1.1 Discussion  
The changes that has been incorporated in this approach, into the 
Eclipse framework have been done in confirmation to the Eclipse 
community as well as the JML group. New code has been 
essentially written only in two packages – 
   • org.eclipse.jdt.core/compiler/org/eclipse 
/jdt/internal/compiler 
   • org.eclipse.jdt.core/compiler/org/eclipse 
/jdt/internal/compiler/parser 



Another aspect was the addition of minimal extension points. In 
this approach we have added just one extension point.  

8.1.2 Conformance to Design Goals 
The newly added code very much adheres to the design goals. 
They are simple and modular. It is modular because the new 
components are very much separate from each other. That is, the 
component Preprocessing only preprocesses the new CU, while 
addWrapperMethods actually adds runtime assertion checking 
code into the original source code. It also conforms to the 
Proportionality goal – it required a small extension and we indeed 
did this by just adding 17 lines of code into the existing 
architecture. These 17 lines are responsible for the double-round 
compilation technique. Since the design was itself modular and 
the extension point has been kept to just 1, analysis can easily be 
done into the new architecture, as if no change has been done to 
the existing Eclipse framework at all. 
 
8.2 Incremental Approach 
Currently we have not been able to implement this approach and 
integrating it with the Eclipse JDT framework. As we had 
explained previously, that this approach primarily talks about 
compilation only of the RAC code (during the second compilation 
path). This means we require to parse, bind and static analysis this 
code on the context of the actual source code. The reason for our 
inability to implement this approach is that Eclipse JDT 
framework does not support incremental compilation at the 
method or more grainer level. Eclipse supports incremental 
compilation at the class level. 
One approach towards finding a solution is to somehow (which 
we need to find) tell the ASTParser class under which context 
should it be typed into. This would help us in merging the two 
ASTs. Once we can get these two ASTs we can easily generate 
the bytecode for it using the generate() method provided by 
Eclipse framework itself. 
 
8.3 Byte Coding Weaving Approach 
Currently we are undergoing an extensive study on this approach, 
that would enable us to gather sufficient knowledge which would 
help us to implement this approach. Some current methods 
available are BCEL, ASM, etc. We are currently studying them, 
and in future we may also come up with our own Byte code 
Manipulation tool. This is primarily because the available tools 
may not suite our need completely, and by making our own tool 
we may not depend on a third party plugin tool.  
 

9. BYTE CODE ARCHITECTURES 
This section discusses about the several approaches through 
which we can actually finalize the internal format of runtime 
assertion checking code. Method specifications are translated into 
runtime assertion checking code following some steps. The last 
step is the attaching of assertion checking code to the original 
code. This step is for injecting the assertion checking code into 
the appropriate place of the original code.     
How is the assertion checking code injected into a method so that, 
for example, the method's pre- and post conditions are checked 
before and after the execution of the method body? There are 
three possibilities viz. in-line approach, a wrapper approach and a 
semi- wrapper approach. .   

 
9.1 In-line Approach 
An in-line assertion, also called an intracondition, is an assertion 
that can be specified in the method body. In this approach, the 
assertion checking code is inserted directly into the body of the 
method being checked. For example, the precondition checking 
code becomes the first statement (or a block of code) of the 
method body. In JML, an in-line assertion is treated as a 
statement, and thus can appear where a Java statement is allowed. 
JML provides several kinds of in-line assertions, such as assert 
statements, assume statements, hence by statements, unreachable 
statements, set statements, and loop in-variant and variant 
statements. 

9.1.1 Importance 
JML statements like assert, assume, hence_by, etc. can be realized 
better using In-line approach. An assert statement is a 
specification statement containing a boolean expression that must 
hold when the control reaches the statement. An assume statement 
is a specification statement that specifies an assumption that the 
programmer makes on the program state when the control reaches 
the statement. In-line approach is best used for those JML 
statements which are statement specific. This approach is simple 
and efficient; it does not incur extra method calls for assertion 
checking. Another very important use of in-line assertions are to 
check the preservation of properties specified by type assertions 
from client-visible state. This is achieved by injecting assertion 
checking code directly into the client code for each reference of 
public fields. 
 

 
Figure 8. Translation of assert and assume JML statements 

 

9.1.2 Short-comings 
The in-line approach has two shortcomings. First, it is not trivial 
to inject assertion checking code of the post-state assertions such 
as normal and exceptional postconditions, invariants, and history 
constraints. The assertion checking code may not be added at the 
end, because the method body may have return statements. 
Second, the approach does not facilitate a modular way of 
implementing specification inheritance. The assertion checking 
code cannot be inherited by subclasses, as it is embedded into the 
method body. For subclasses, assertion checking code must be 
regenerated or textually copied down from superclasses and 
implemented interfaces (which may need renaming and other 
modifications).  



 
9.2 Wrapper Approach 
A wrapper approach is used to check method specifications. Each 
method is transformed into a private method, and instead a new 
wrapper method is generated with the same name and signature. 
As a result, all client calls to the original method now go to the 
wrapper method. The wrapper method is responsible for 
transparently checking method specifications. For this, the 
wrapper method delegates client calls to the original method 
wrapped with appropriate assertion checking. It calls pre-state 
assertion methods such as preconditions and pre-state invariants 
before delegating the method call; it calls post-state assertion 
methods such as postconditions, post-state invariants, and 
constraints, after delegating the method call. This new wrapper 
method is created as a separate class. From the client point of 
view, this has the effect of checking pre-state assertions in the 
pre-state and post-state assertions in the post-state. 

 
Figure 9. Conceptual understanding of Wrapper approach 

 

9.2.1 Importance 
The wrapper approach is better structured and organized as the 
instrumented code is modularized with wrapper methods and 
assertion checking methods. The approach also facilitates 
specification inheritance; a subclass can call the corresponding 
assertion checking methods of its superclasses to inherit 
specifications. 

9.2.2 Short-comings 
The only disadvantage of wrapper approach is its performance 
and space issues. Due to several calls of different wrapper 
methods,  compilation-time of the code increases. Due to addition 
of our own wrapper methods and creating new .class files, the size 
also increases a lot, in comparison to the in-line approach. 
Another short coming of this approach is, the implementation of 
statement- specific JML statements like assert, assume, is very 
difficult. 
 

9.3 Semi-Wrapper Approach 
One major difficulty is to the synchronization between two or 
more class files, due to generation of neew class files for wrapper 
methods. From the above discussion we can very well conclude 
that implementing our JML RAC using any of the above two 
approaches would be difficult. Hence, we propose a third 
approach – a hybrid approach which implements wrapper 
approach in in-line style. In this approach we create new wrapper 
methods and embed them into the original source code itself. 
Thus we do not create a new class file for the wrapper methods. 

9.3.1 Importance 
Since this approach is possibly an improvement than the wrapper 
approach: it benefits from the pitfalls of it. Since we have been 
able to negate the extra overhead between different files this 
potentially increases the performance. 

9.3.2 Short-comings 
However it still falls short in coming up with an approach that 
would enable us to not only decrease computation time but also 
the compiled size code. This approach still has overhead which in 
reality increases the time complexity and compiled size code. 

10. EVALUATION 
We would be evaluating the proposed architectures against our 
design goals and the RAC features. We would be creating 
prototypes for the proposed architecture. We should also create 
exhaustive test cases that we can test against the individual 
prototypes. The results from the test runs and static analysis 
would help us to come up with one architecture which would help 
us to achieve our Designed Goals. 

11. CONCLUSION 
In this paper, we have outlined a strategy for extending eclipse 
framework to incorporate JML. In particular use runtime assertion 
checking on eclipse platform. This strategy is not without 
challenges, however. Two of the more troublesome are finding 
the right extension points and minimal change in the actual 
eclipse source code. The architecture that would be eventually 
chosen must adhere to certain specific criteria.  
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APPENDIX A-1 

/** 
  * Process a compilation unit already parsed and build. 
  */ 
 public void process(CompilationUnitDeclaration unit, int i) { 
 
  this.lookupEnvironment.unitBeingCompleted = unit; 
 
  this.parser.getMethodBodies(unit); 
   
  // fault in fields & methods 
  if (unit.scope != null) 
   unit.scope.faultInTypes(); 
 
  // verify inherited methods 
  if (unit.scope != null) 
   unit.scope.verifyMethods(lookupEnvironment.methodVerifier()); 
 
  // type checking 
  unit.resolve(); 
 
  // <jml-start id="6" /> 
  if (this.options.jmlEnabled) { 
   this.jmlSourceLookup.mergeWithSourceAndSpec(unit); 
  } 
  // <jml-end id="6" /> 
  // flow analysis 
   unit.analyseCode(); 
   
  // Second time-processing for RAC 
  Unit = Preprocessing(unit); 
   
  // <jml-start id="extension" /> 



  if (this.options.jmlEnabled) 
   CompilerExtension.preCodeGeneration(this, unit); 

      // <jml-end id="extension" /> 
   
  // code generation 
  unit.generateCode(); 
 
  // <jml-start id="6" /> 
  if (this.options.jmlEnabled && this.options.jmlNullityCountsEnabled) { 
   CompilationUnitScope scope = null; //new CompilationUnitScope(unit, 
this.lookupEnvironment)); 
   unit.traverse(new ReferenceCounterVisitor(this.problemReporter), scope); 
  } 
  // <jml-end id="6" />   
  // reference info 
  if (options.produceReferenceInfo && unit.scope != null) 
   unit.scope.storeDependencyInfo(); 
 
  // finalize problems (suppressWarnings) 
  unit.finalizeProblems(); 
   
  // refresh the total number of units known at this stage 
  unit.compilationResult.totalUnitsKnown = totalUnits; 
 
  this.lookupEnvironment.unitBeingCompleted = null; 
 } 
 
 
 
 
 
 
 
 



APPENDIX A-2 

 
/** 

  * Process a new compilation unit for second time processing for RAC 
  */ 
  
 public CompilationUnitDeclaration Preprocessing(CompilationUnitDeclaration 
currentUnit){ 
 
  CompilationUnitDeclaration newUnit = null; 
  newUnit = this.parser.addWrapperMethods(currentUnit); 
   
  lookupEnvironment.buildTypeBindings(newUnit, null); 
  lookupEnvironment.completeTypeBindings(); 
   
  // Update in the lookupEnvironment that the unit being completed is the new 
Unit 
  this.lookupEnvironment.unitBeingCompleted = newUnit; 
 
  this.parser.getMethodBodies(newUnit); 
 
  // fault in fields & methods 
  if (newUnit.scope != null) 
   newUnit.scope.faultInTypes(); 
 
  // verify inherited methods 
  if (newUnit.scope != null) 
   newUnit.scope.verifyMethods(lookupEnvironment.methodVerifier()); 
 
  // type checking 
  newUnit.resolve(); 
   
  // <jml-start id="6" /> 



  if (options.jmlEnabled) { 
   jmlSourceLookup.mergeWithSourceAndSpec(newUnit); 
  } 
  // <jml-end id="6" /> 
   
  // flow analysis 
  newUnit.analyseCode(); 
 
  // replace the new Unit from the current unit 
  this.unitsToProcess[0] = newUnit; 
 
  return newUnit; 
 } 
 
/* 
 * Adds new Wrapper methods for implementation of RAC 
 */ 
public CompilationUnitDeclaration addWrapperMethods(CompilationUnitDeclaration 
sourceUnit){ 
 CompilationUnitDeclaration unit; 
 CompilationResult compilationResult = sourceUnit.compilationResult; 
 try { 
  /* automaton initialization */ 
  initialize(true); 
  goForCompilationUnit(); 
 

// unit creation  
  this.referenceContext =  
   this.compilationUnit =  
    // <jml-start id="nnts" /> 
    // TODO: this might go away when default nullities are moved to type 
declarations 
    new JmlCompilationUnitDeclaration( 
    // <jml-end id="nnts" /> 



     this.problemReporter,  
     compilationResult,  
     0); 
  /* scanners initialization */ 
  char[] contents; 
  try { 
   contents = compilationResult.compilationUnit.getContents(); 
     
   // convert to string format for easy manipulation 
   String sourcecode = CharOperation.charToString(contents); 
   int cut = sourcecode.lastIndexOf("}");  
   String substring = sourcecode.substring(0, cut); 
   String newString =  "public void checkPre$m(int x){\n" + 
       "if(!(x>0)){\n" +  
       "\t throw new Error(\"Precondition Failure\");}" + 
       "}\n" +  
       "public void checkPost$m(int x){\n" + 
       "if(!(x>5)){\n" +  
       "\t throw new Error(\"Postcondition Failure\");}" + 
       "}\n" + 
       "public int $m(int x){\n" + 
       "\t checkPre$m(x);\n" + 
       "\t int retValue = m(x);\n" + 
       "\t checkPost$m(x);\n" + 
       "\t return retValue;}\n" + 
       "}"; // for the main class 
   substring = substring + newString; 
       
   //Replacing some characters 
   substring = substring.replaceAll("public int m", "private int m"); 
   substring = substring.replaceAll("jmlObject.m", "jmlObject.\\$m"); 
   System.out.println(substring); 
   contents = substring.toCharArray(); 
  } catch(AbortCompilationUnit abortException) { 



   this.problemReporter().cannotReadSource(this.compilationUnit, 
abortException, this.options.verbose); 
   contents = CharOperation.NO_CHAR; // pretend empty from thereon 
  } 
  this.scanner.setSource(contents); 
  /* run automaton */ 
  parse(); 
 } finally { 
  unit = this.compilationUnit; 
  this.compilationUnit = null; // reset parser 
  // tag unit has having read bodies 
  if (!this.diet) unit.bits |= ASTNode.HasAllMethodBodies; 
  } 
 return unit; 
} 

 

 

 

 

 

 

 

 

 

 



APPENDIX A-3 
SPECIFICATIONS DETAILED DESCRIPTION JML STATEMENTS JML2 

behavior Y 
normal behavior Y 

 
Heavyweight & Lightweight Specifications 

 

exceptional behaviour Y 
public Y 

protected Y 
package-visible Y 

 
Privacy of Method Specifications 

 

private Y 
public Y 

protected Y 
package-visible Y 

 
Privacy of Type Assertions 

 

private Y 
Preconditions  requires Y 

Normal Post condition  ensures Y 
Exceptional Post condition  signals Y 

Frame Conditions  assignable Y 
Redundancy  _redundantly Y 

Specification Case also Y 
Nested Specification  Y 

 
Syntactic Sugars 

Desugaring Specification  Y 
Demonic  Y Undefinedness Problem 
Angelic  Y 

Universal Quantifiers for all Y 
Existential Quantifiers exists Y 

Generalized Quantifiers sum, product, min, max Y 
Numeric Quantifiers num of Y 

 
 

Quantified Expression 

Set Comprehension new T Y 
Assertions, Assumptions assert, assume, hence_by Y 
Unreachable Statements unreachable Y 

Set Statements sets Y 
Loop Invariants maintaining Y 

 
 

Inline Assertions 

Loop Variants decreasing Y 
Implicit  Y Constructors 
Explicit  N 

Finalizers   Y 
Helper Methods   Y 

Static  L Type Invariants 
Instance  L 

Static  L 
Instance  L 

Old Expression  L 
Nested Method Calls  L 
Universal Constraint  L 

 
 
 

Type Constraints 

Method Specific Constraints  L 
Specifications for Interfaces   Y 

Strong Behavioral Subtyping  Y 
Weak Behavioral Subtyping  Y 

 
Inheritance of Specifications 

Multiple Inheritance  Y 
Inheritance of Instance Invariants   Y 

Inheritance of Instance Constraints   Y 
Inheritance of Interface Specification Propagating Assertion calls to Super Interfaces  Y 

Inheritance  Y 
Interface Model Fields  Y 

 
                              Model Fields 

Interface Model Fields Inheritance  Y 
Inheritance  Y 

Interface Ghost Fields  Y 
 

Ghost Field 
Interface Ghost Fields Inheritance  Y 

Model Methods   Y 
Refinement  refine N 

Model Program   N 
Time and Space reqs. in concurrent programs  N 

duration N 
 

Non Functional Properties  
working space N 

Concurrency Aspects of Programs Synchronization when N 
accessible N Subclassing  
callable N 

Example Specification   N 
Termination   N 
Initializers   N 

Model Classes   N 
Model Interface   N 
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