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Abstract

The Java Modeling Language (JML) is a formal behavioral interface specification language

for Java. It is used for detailed design documentation of Java program modules such as

classes and interfaces. JML has been used extensively by many researchers across various

projects and has a large and varied spectrum of tool support. It extends from runtime

assertion checking (RAC) to theorem proving.

Amongst these tools, RAC and ESC/Java has been used as a common tool for many

research projects. RAC for JML is a tool that checks at runtime for possible violations of

any specifications. However, lately there has been a problem for tool support. The problem

lies in their ability to keep up with new features being introduced by Java. The inability to

support Java 5 features such as generics has been reducing the user base, feedback and the

impact of JML usage. Also, the JML2 compiler (jmlc) has a very slow compilation speed.

On average, it is about nine times slower than a Java compiler such as javac. It is well

understood that jmlc does more work than a Java compiler, hence it would be slower. The

jmlc tool uses a double-round strategy for generating RAC code. The performance can be

improved by optimizing compilation passes, in particular, by abandoning the double-round

compilation strategy.

In this thesis I propose a technique for optimizing compilation speed using a technique

known as AST merging with potential performance gain than its predecessor. The jmlc

tool parses the source files twice. In the first pass, it parses the source file whereas in the

second the source file is parsed again along with the generated RAC code. This affects the

performance of the JML compiler, as parsing is one of the most costly tasks in compilation.

In this thesis, I show how I solved this problem. Also, discussed in this thesis is how the

new JML compiler (jml4c) was built on the Eclipse platform. To reduce maintainability

issues with regards to code base for current and future versions of Java, Eclipse was chosen

as the base compiler. The code base to support new Java language constructs can now be
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then implicitly maintained by the Eclipse team, which is outside the JML community.

Most of Level 0 and Level 1 features of JML have been implemented. These are the

features that are most commonly used in JML specifications. Almost 3500 JUnit test cases

were newly created and run. Test cases and sample files from jmlc were incorporated to

check completeness of the implementation. A subset of the DaCapo benchmark was used

to test the correctness and performance of the new compiler. Almost 1.5 million lines of

code was compiled across 350 packages generating about 5000 class files which shows that

the compiler built can be used for practical and industrial purposes.

I observed that my proposed technique or the AST merging technique on an average is

about about 1.6 times faster than the double-round strategy of jmlc;overall, jml4c was three

times faster than jmlc. I also observed that this speedup increases with increase in lines of

source code. As any industrial code or a sample code for which JML specification can be

meaningfully used ranges in thousands of lines of code, our proposed technique will benefit

from this. The implementation details showed the feasibility of the AST merging technique

on the Eclipse platform which included front end support (lexing, parsing, type-checking)

and back-end support (RAC generation and code generation). Several new features were

also added that was either absent or partially implemented in jmlc. Some of them includes

adding support for runtime specification inside inner classes, annotation for the enhanced-

for loop, support for labeled statements, enhanced error messages and others.
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Chapter 1

Introduction

In this chapter, I first present an introduction to and the motivation for this thesis, which is

followed by background material on the Java Modeling Language (JML), runtime assertion

checking, Eclipse platform, incremental compilation, and abstract syntax trees. Then, I

briefly summarize the problems that are addressed in this thesis. I also give an overview

of my solutions to these problems. Finally, I summarize my contributions.

1.1 Background

The quality of software designs becomes improved by writing formal interface specifications

of program modules such as classes and interfaces [Mey88] [Tan94]. The Java Modeling

Language (JML) is one such specification language that helps us to write specifications for

Java programming modules [LCC+05] [LBR06]. JML has a syntax that is easily understood

by Java programmers, and yet provides many advanced features to facilitate writing ab-

stract, precise, and complete behavioral descriptions of Java classes and interfaces [LBR99]

[LCC+05] [LBR06]. However, formal specifications are seldom used in practice; it does

not give any immediate tangible benefit. The benefits of using specifications are not ob-

vious to programmers. The JML compiler [CL02] brings immediate and tangible benefits

in terms of programming activities, such as debugging and runtime constraint validation.

However, building such a compiler for a large practical language, such as Java [GJSB05]

is a significant effort. Writing a runtime assertion checker for Java involves building or

understanding and reusing a Java compiler and then extending that compiler with features

of the formal specification language used to specify what to check dynamically. One of
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the most important tool that is available for JML is its compiler (jmlc) [CL02]. However

there are several problems with the current JML compiler. Its compilation speed is very

slow compared to a Java compiler, it does not support any Java 5 features, and it contains

implementation errors, amongst others.

In this thesis, I address the problems and issues related to the slowness of the JML

compiler and show how my solution is implemented on the Eclipse platform. In the following

subsections, I introduce briefly the Java Modeling Language, runtime assertion checking,

the Eclipse platform, and concepts of incremental compilation and abstract syntax trees.

I also outline very briefly the problem that I am solving in this thesis, my objectives, my

approach, and contributions.

1.1.1 The Java Modeling Language

The Java Modeling Language (JML) [LPC+06] is a formal behavioral interface specifi-

cation language (BISL) used to specify the behaviors of Java program modules. Unlike

Java, JML assertions are not limited by Java’s expressions; JML introduces a varied set of

constructs including in-line assertions, quantifiers, invariants, history constraints, informal

descriptions, model programs, and many more.

JML annotations are written inside multi-line comments like /*@ ... @*/ or single-line

comments like //@ ... . For a Java compiler, the specifications are treated as comments

and hence ignored, but in a JML compiler these comment-like specifications are translated

into executable code. All features of JML are grouped into 4 levels, namely, levels 0, 1, 2

and X. Most of the features of JML are included in the first two levels.

Figure 1.1 shows a sample Java code annotated with JML specifications. The sample

code would be used as a running example throughout this thesis, unless otherwise explicitly

mentioned. In the code, line 6 is an example of type specification which is used to constraint

the field balance to be always positive for all objects of class BankAccount. In line 5

the annotation spec_public is used to broaden the scope of the field (to public) inside

specifications such that it can be referred by subclasses. The next few lines (8 – 12) shows

2



1 interface Account {

2 public long withdraw(long amt) throws TransactionException;

3 }

4 public class BankAccount implements Account {

5 private /*@ spec_public @*/ long balance; // more fields ...

6 //@ public invariant balance >= 0;

7

8 /*@ requires amt > 0 && amt <= balance;

9 @ assignable balance;

10 @ ensures balance == \old(balance - amt) && \result == balance;

11 @ signals (TransactionException) balance == \old(balance );

12 @*/

13 public long withdraw(long amt) throws TransactionException {

14 // method body ...

15 }

16 class TransactionException extends RuntimeException{

17 // class body ...

18 }

Figure 1.1: Example JML specification

what a typical method specification looks like. The specifications are written for the method

withdraw which takes one parameter amt. The constraints that are to be satisfied by this

method can be sub-divided into three method specifications: pre-condition, normal post-

condition and exceptional post-condition. A pre-condition specifies what should be satisfied

prior to entering this method. A normal post-condition specifies what are to be satisfied

on exiting normally from this method. And an exceptional post-condition specifies what

exceptions can be thrown and under what condition. In this example, the pre-condition

specified by requires clause constraints that the parameter amt should be positive; and it

should be less than the available balance. The normal post-condition specified by ensures

clause specifies that balance after the transaction has completed must be equal to the old

3



value of balance - amt and the return value for this method should be equal to the current

balance. The old value of balance is the pre-state value of balance. The exceptional post-

condition specified by signals clause specifies that if the method invocation terminates

abruptly by throwing an exception of type TransactionException, then balance must be

equal to the old value of balance. In addition to this, the method should also satisfy the

assignable clause i.e., of all the fields only balance can be assigned inside this method.

The runtime assertion checker, a.k.a. JML2 ∗, is used to translate the above specifications

into byte-code that can be evaluated at runtime.

In this thesis, I address the problems and issues related to runtime assertion checking

compiler of JML.

1.1.2 Runtime Assertion Checking

Assertions are statements that are true at certain points of time in the program code

[Hoa69]. These assertions in the program code are very useful for debugging purposes

as well as proving program correctness [WK97]. They are also used for improving soft-

ware testability [YB94]. RAC, for runtime assertion checking, is used to check at runtime

whether assertions specified in the program holds or not. The JML compiler is used to gen-

erate byte-code for Java program modules that check at runtime whether any assertions

has been violated or not.

Figure 1.2 shows a typical example of error reporting by the JML compiler to

check for constraint validation. In this execution, the method withdraw is invoked

with amt = -100. This violates pre-condition of the method specification. Hence

JMLInternalPreconditionError is thrown with value as amt: -100.

∗Due to historical reasons the current JML compiler is popularly known as JML2.
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Exception in thread "main"

org.jmlspecs.jml4.rac.runtime.JMLInternalPreconditionError:

By method BankAccount.withdraw

Regarding specifications at

File "BankAccount.java", line 7, character 16

With values

amt: -100

at BankAccount.withdraw(BankAccount.java:7)

at BankAccount.internal$main(BankAccount.java:615)

at BankAccount.main(BankAccount.java:9)

Figure 1.2: Output of JML under violation of a specification

1.1.3 Techniques to Validate Assertions

Constraint validation is one of the most important ways for a system to ensure integrity.

Constraints are primarily stated using pre- and post-conditions. There are several ways to

implement constraints that can either be validated statically or at runtime. Some of the

approaches are handcrafted constraints [FGOG07], code instrumentation [Pay03] [Kra98b],

compiler approach [LBR99], explicit constraint classes [FOG06], and interceptor mecha-

nisms [WM05]. Another very efficient approach for generating runtime code is through

incremental weaving [PK07]. However, one of the most popular variants is code instru-

mentation where it injects automatically generated code into the original code. There can

be two variations to this, in-place code instrumentation, where the assertion checking code

is placed within the original code and wrapper-based approach [TE03], where separate

methods are generated for assertion checking.

1.1.4 The Eclipse Platform

Eclipse [Ecl] is a plug-in based application development platform for building rich client ap-

plications. An Eclipse application consists of the Eclipse plug-in loader (Platform Runtime
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component), certain common plug-ins (such as those in the Eclipse Platform package) along

with application-specific plug-ins. Java support is provided by a collection of plug-ins called

the Eclipse Java Development Tooling (JDT) offering, among other things, a standard Java

compiler and debugger. Figure 1.3 shows the overview of the Eclipse architecture. The

Eclipse Software Development Kit (SDK) is a combination of the Eclipse Platform, Java

Development Tools (JDT), and the Plug-in Development Environment (PDE). As shown

in the figure, the Eclipse Platform contains the functionality required to build an IDE.

However, the Eclipse Platform is itself a subset of these components.

Figure 1.3: Eclipse plug-in architecture

The main packages of interest in the JDT are the ui, core, and debug. As can be

gathered from the names, the core non-UI compiler functionality is defined in the core

package; UI elements and debugger infrastructure are provided by the components in the

ui and debug packages, respectively. One of the rules of Eclipse development is that public

APIs must be maintained forever. This API stability helps avoid breaking client code. The

following convention was established by Eclipse developers: only classes or interfaces that

are not in a package named internal i.e., all subpackages of core, can be considered part

of the public API.
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1.1.5 Incremental Compilation

Incremental compilation involves recompiling only that section of code that has been

changed since the last compilation [Rei84]. For incremental compilation, the unit of in-

crementality is a very important concept. The unit of incrementality denotes the level at

which re-compilation is done. Figure 1.4 illustrates the hierarchy of unit of incrementality

in general. At the bottom is the compilation unit or the file that contains the source code.

The compilation unit contains one or more types which may be class or interface. Each of

these types are further subdivided into method level, followed by statement and expression

levels. Various commercial compilers have different unit of incrementality i.e., a change

at the statement level may trigger the compiler to compile only the changed statement,

whereas in other cases it may trigger to compile the method in which the statement has

been changed or in other cases the entire type is compiled again. In JML, most changes

to the original source code (using the wrapper-method approach discussed in Section 3.1)

happens at the method level, followed by statement and type levels.

Figure 1.4: The hierarchy of unit of incrementality
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1.1.6 Abstract Syntax Trees (AST)

An abstract syntax tree (AST) is a tree representation of the syntactic structure of a source

code written in a certain programming language. Compilers use AST to represent programs

under compilation. Each node of the tree denotes a construct occurring in the source code.

Figure 1.5 represents a general form of an AST followed by a concrete example where the

AST represents the source code listed in Figure 1.1. The left side of the figure shows

the Java model as an AST where each node represents an element in the Java model. In

Eclipse, a compilation unit represents a Java source file. Under each compilation unit,

there are package-statements, import-statements and type declarations. The Java source

file is entirely represented as a tree of AST nodes. Every node is specialized for an element

of the Java programming language e.g., there are nodes for method declarations, variable

declarations, assignments and so on. The bottom half of the figure shows a partial abstract

syntax tree form of the source code enlisted in Figure 1.1.

An AST is just a tree-form representation of source code. Every element of the source

code is mapped to a node or a subtree. However in Eclipse, every AST node is associated

with an id, namely ASTBits. This id is a 32-bit integer value where each of the bits

provide more information of the AST node including type-checked information, information

regarding return values, and the type of node. It acts as a blue-print for the information

contained in the AST node.

Since all the operations in Eclipse is done through AST nodes, it is interesting to know

how these nodes are visited. Eclipse uses the visitor pattern [GHJV95] to traverse these

nodes. It provides two operations to be performed on every node of an AST.

1.2 The Problem

The current JML compiler has several problems including the slow speed of the JML

compiler compared to a modern Java compiler, lack of support for Java 5 features, lack

of integration with an IDE, and unsupported features of JML. However the main problem
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Figure 1.5: Abstract Syntax Tree Example

that I focus on this thesis is to develop a JML compiler that is faster than the previous

JML compiler. I develop the JML compiler on the Eclipse platform for IDE integration

and to support Java 5 features.

1.3 Objectives

My ultimate research objective is to show that my general approach towards faster gener-

ation of runtime assertion checking code is a feasible solution. I believe that a good way

to do this is to show that the approach can be implemented on the Eclipse platform. My

approach for achieving this is to develop an effective, extensible, and easily maintainable

infrastructure. The techniques that I envision give an immediate and tangible results show-

ing the performance gain over the existing JML compiler. The following summarizes my
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specific research goals.

1. To develop a general AST merging approach which can be tailored for any formal

specification language.

2. To develop a runtime assertion checker for JML on the Eclipse platform. This includes

techniques to integrate our implementation with that of Eclipse.

3. To develop a framework such that there is a compilation speed up compared to the

current JML compiler.

4. The implementation on the Eclipse platform should have minimal extension points

so that it is easier to maintain and extend the framework.

In summary, the main goal of this thesis is to create a technique to generate automated

runtime assertion checking code faster than the previous approach. The intention is to

make the technique as general as possible.

In this thesis, I address most of JML’s Level 0 and Level 1 features [LPC+06], but some

of the advanced JML features such as model programs, refine statements, and others in

Levels 2 and X features are left as future research topics.

1.4 Approach

In this section, I summarize my approach to the problems and challenges that were identified

in the previous sections.

1. I introduce the notion of “AST merging” to merge specification checking code and

original code such that the byte-code generated is used for checking runtime violation

of any assertion. This approach is faster in compilation time than the double-round

strategy of the compilation method.

2. I tailor or refine my general approach for JML.
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3. I develop AST merging framework for JML on the Eclipse platform. I use it to

integrate the new JML compiler to the IDE.

4. I refine the translation rules of jmlc (JML2) to support Java 5 features.

5. I test my framework and implementation using Junit test cases. Almost 40K test

cases were tested including all the 35K test cases of the Eclipse compiler, test cases

from jmlc, and newly written test cases to test the new framework. To test the

effectiveness of the new approach, the approach was tested on the DaCapo benchmark

[BGH+06a][BGH+06b].

1.5 Contributions

One of the most important contributions of this thesis is that it demonstrates and achieves

a performance speed-up compared to the current JML compiler.

The second contribution is that it opens a new possibility in runtime assertion checking

by successfully supporting AST merging technique.

The third contribution is that this thesis resolves many unsupported features of the

current JML compiler, and resolves several existing known and unknown bugs in the JML

compiler. Moreover bugs were newly discovered in the existing JML compiler.

The fourth contribution is that it supports Java 5 features which would broaden the

scope of JML users (since the current compiler does not support Java 5 features and is

reducing user code base).

Finally, it provides to the Java or JML community a runtime assertion checker, which

is integrated with an IDE.

1.6 Outline

The rest of this thesis is structured as follows.
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In Chapter 2, I give an overview of the current JML compiler, explaining its important

concepts and underlying architecture. I focus on the problems of the current JML compiler,

most importantly the inability to support Java 5 features and slow compilation speed.

In Chapter 3, I explain my proposed approach. I use AST merging technique to merge

original source code with the runtime code for proper validation at runtime. I also show how

this general approach can be tailored for JML to be implemented on the Eclipse framework.

In Chapter 4, I outline my evaluation strategy and demonstrate the practicality and

effectiveness of my approach by applying it to specification-based representative test cases.

The goal is to show that my approach is indeed faster than the double-round approach

implemented in the current JML compiler. All the existing test cases of the Eclipse compiler

were also tested to show that the new compiler does not break existing code and that all

Java features are supported. Test cases from the DaCapo benchmark were also tested to

show that the JML4c is able to compile real applications.

In Chapter 5, I conclude this thesis with a summary of my findings, followed by an

outline of future research directions.
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Chapter 2

The Current JML Compiler and Its

Problems

In this chapter I give an overview of the current JML compiler, its underlying architecture,

and the associated problems that are to be addressed in this thesis. I first show a top level

view of the JML compiler and then explain informally the main architectural features of

the compiler that are interesting from the perspective of runtime assertion checking. I also

point out the problems of certain translation rules, as implemented in the current JML

compiler. Also, mentioned are the problems of engineering these translation rules into Java

programs by introducing new techniques and approaches. For complete description of JML,

one should refer to JML documents such as the reference manual and design documents

[LPC+06] [LBR99] [LCC+05] [LBR06] [CL02].

The following section discusses the compilation-based approach, the architecture of the

current JML compiler, and the reasons behind performance degradation of JML2.

2.1 JML Compiler

A compilation-based approach was used for JML tool support including the JML com-

piler, as it is an intuitive and easy-to-use approach (see Figure 2.1). JML annotates its

specification code inside special forms of comments, like (//@ ...). This has an advantage

that Java or JML source files can be compiled with a Java compiler like javac. The JML

compiler compiles Java source programs by translating JML annotations, if any, into run-

time assertion checking code. It produces as output Java byte-code (.class) files, that
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can be used in the same way as the output of Java compilers. The byte-code files may run

on any Java Virtual Machines (JVMs) except that they may refer to JML-specific runtime

classes. In summary, JML compiler is essentially a Java compiler with additional capability

of translating JML specifications into automatic runtime checks.

Figure 2.1: Compilation-based approach for JML Compiler

2.2 Double-Round Approach

The current JML compiler (jmlc) uses the double-round approach [CL02] to generate run-

time assertion code. It uses the compilation-based strategy by using an underlying Java

compiler to reuse already existing code of a Java compiler. The key idea behind the jmlc

architecture is to introduce a new compilation pass that generates assertion code and then

to rewire the whole compilation pass to generate single byte-code for the original and as-

sertion code. Figure 2.2 shows the architecture of the current JML compiler, jmlc. The

common code base for jmlc is an open-source Java compiler.

A new compilation pass called RAC code generation after the JML type-checking pass

was added to implement so called the double-round approach. In this pass, runtime asser-

tion checking code is generated from the type-checked abstract syntax tree. In this pass,

the abstract syntax tree may be mutated to add special nodes for assertion code generation.

If these added nodes are in the type-checked form, then compilation may proceed directly

to the Java’s code generation pass; this would be ideal in terms of the compilation speed.
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However, the complexity of runtime assertion checking code makes it difficult to automate

this process. To somewhat simulate this behavior, a new pass called the RAC code printing

was added that writes the new abstract syntax tree to a temporary file, which ends the

first pass compilation. In the second pass, the temporary file is compiled into byte-code by

following the Java compilation passes.

Figure 2.2: Double-round architecture for the current JML compiler (jmlc)

This architecture is called double-round because the original source code goes twice

around the compilation path.

2.3 Problems

There are several problems associated with the current JML compiler. The problems

ranges from issues related to performance of the JML compiler, deficiency in the existing

translation rules, unsupported JML features, existing bugs in the JML compiler, and lack

of support for Java 5 features like generics. The following subsections discusses them in

detail.
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2.3.1 Performance

A pressing problem of the current JML compiler is its performance. The existing JML

compiler, jmlc, from the performance point of view is almost nine times slower than a

Java compiler. The compilation time is huge compared to the compilation speed of a Java

compiler like javac (see Figure 2.3)∗. However, it is evident that since jmlc does more

work than javac, it would take more time. There are several reasons for this slowness.

Some of them are:

1. The jmlc tool does more work than javac. That is, using compilation-based approach

[LBR99], it injects assertion-checking code into the original source-code for runtime

evaluation.

2. The jmlc tool, being built on an open source Java compiler, MultiJava [CMLC06],

results in decreasing its performance. The open source compiler is not as efficient as

javac; it is not optimized for any kind of performance tuning unlike javac [Sun05].

3. Unlike Java compilers, the current JML type-checker parses the source files of all refer-

enced types (for more information, refer to Section 2.4.) This affects the performance

of the JML compiler, as parsing is one of the most costly tasks in compilation.

4. The compilation process of jmlc is double-round. That is, every type specification

undergoes two time compilation which results in slower performance.

The programs that were test run for checking the compilation time for testing JML

specifications were taken from the programs that were distributed as a part of the JML

package, under the samples folder. A total of 15 sample programs were test run (see Table

2.1). They were taken from the distribution package JML2 version 5.6RC4. They are

considered as standard test samples for a JML compiler.

∗For more information refer to Appendix B.
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Table 2.1: Characteristics of “sample” programs

Program Types Methods Fields Lines

AlarmClock 4 17 11 389
Purse 3 8 6 192

Digraph 9 64 14 900
DirObserver 5 13 3 189

PriorityQueue 3 13 3 101
DLList 8 66 14 1228

TwoWayNode 8 70 10 1272
Counter 3 6 3 103

LinearSearch 4 14 1 221
Proof 1 4 2 241

Reader 4 11 11 257
SetInterface 3 23 7 782

BoundedStack 5 33 11 573
UnboundedStack 5 21 5 223

Entry 4 22 6 299

Table 2.1 shows the characteristics of individual test samples in terms of number of

types, methods, field declarations and total number of source code (number of executable

lines, comments are ignored).

Figure 2.3 shows the compilation speed of jmlc and javac. From Figure 2.3, we can

compute the average relative-slowness of the current JML compiler as:

rsavg =

∑n
k=1 rsk

n
=

∑n
k=1

tkjml

tkjavac

n
≈ 8.5 (2.1)

where n = 15, rs represents the relative-slowness and it is assumed that all programs are

equally complex.

From the reasons cited above, obviously there’s nothing that we can do about the

first reason. Runtime assertion checker for JML is a tool that is used to specify program

behaviors of modules. It adds more functionality to the Java compiler and thus does more

work than a Java compiler. Regarding the second, there is work going on to build next

generation tools on the Eclipse platform [CJK07] [KCJG08] [CJK08a], which is claimed to
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Figure 2.3: Relative-slowness of the jmlc tool compared to javac

be more efficient. The third issue is not addressed in this thesis. One solution would be to

encode the signature information of JML specifications into byte-code or separate symbol

files and to eliminate parsing of referenced types (see Section D, for further details.) The

fourth is the main research question being addressed in this thesis.

2.3.2 Translation Rules

In loop annotation improper translation rule exists. If the loop annotation contain

continue statements with an associated label (a Java language feature), it may result

in compiler error in the second compilation pass. Another associated problem with loop

annotations is that, if the loop has either a return statement or a throws clause inside the

loop, the instrumented code results in compiler error.
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Figure 2.4: Problem in loop annotation: a synthetic example

Figure 2.4 explains the problem in detail. The source code contains a for loop which

is annotated by a maintaining clause. The loop body contains a continue statement with

an associated label. Even though there is JML annotation between the labeled statement

and the start of the loop, a java compiler treats this statement as a comment line (since it

starts with //) so there is no problem in the first pass. However after code generation by

the JML compiler, assertion checking code is instrumented before the loop and at the end

of loop. In the second pass, this results in a compiler error since the Java language feature

does not allow statements in between labeled statement and the start of a loop where the

label is referenced from a continue statement inside the loop.

2.3.3 Implementation Errors

There are several implementation errors in the current implementation of the JML compiler.

Some of them are discussed below (for a complete list see Section 4.3.4).

Type invariants can refer to static or non-static fields. However proper contextual

information is required for translating them. That is, amongst other things, it is important

to know whether the field that is referred in the invariant clause is a static or non-static

field. As per Java language specification (version 2.0), this operator cannot be used inside

static methods. However in the current JML implementation, if the field referred in the
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static invariant clause is a non-static field then this is used to reference the field, which

results in a compilation error inside static methods.

Figure 2.5: Problem in type invariants: a synthetic example

Figure 2.5 explains the problem in detail. The original code contains a field declaration

that is non-static and has an associated static invariant clause. This is converted by the

JML compiler into a static method where the predicate ( field > 0 ) is checked. However

since field is a non-static field declaration it is converted as this.field which results in

compiler error.

2.3.4 Unsupported Features

Specifications in nested classes are not supported by the current JML compiler. That

means, specifications written in nested classes are not checked at runtime even if the classes

are compiled using the JML compiler and has JML annotations. There is no JML tool yet

that supports the several new features of Java 5, most important is the introduction of

generics. Since the MultiJava compiler is not being maintained, the JML project has been

struggling to support the features of Java 5, especially generics. This is a major problem for

the JML community since most source code in recent times is written in terms of generics

for which the JML compiler cannot be used. Even support for Java 5’s enhanced for loop is

not available in the current release of the Common JML Tools, also known as JML2. Also,

the current instrumented code is not Java 5 compatible, that results in several warnings

from the second pass of compilation which is undesirable.
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2.3.5 Extensibility

The current JML compiler (jmlc) does not support robustness [CJK07]. The code base

of the open source compiler on top of which JML is built does not support extensibility,

hence the maintenance of JML2 becomes extremely difficult. The implementation of the

JML tools exposes various private API’s and manipulates the internal architecture of the

base version which further makes future extensions more difficult.

2.4 A Closer Look at Performance Degradation

In this section I take a closer look at the reasons for performance degradation of the current

JML compiler. Here I discuss how each factor contributes to the slowness of the current

JML compiler and the reasons behind them. I conclude by showing that why double-round

strategy is an important problem to solve which is the focus for my thesis.

2.4.1 The Problem of Separate Compilation

The default behavior of the javac compiler is to compile other dependent or referenced files

iff:

1. Only source code (.java) is available in class-path, or

2. Time-stamp of the source code is later than byte-code (when both are present), i.e.,

the contents of the source code is the latest.

That means, if the source code and byte-code have the same-time stamp then the javac

compiler is not required to compile the source code, it reads the corresponding byte-code.

However in the case of jmlc this is not true; it looks for the source code first (even when the

byte-code is present and has the same time stamp), and if present recompiles the code to

gather type information. That is, the JML compiler uses separate compilation for compiling

dependent files.
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For detailed description and reasons for such behavior in jmlc refer to Appendix D.

Figure 2.6 shows the relative slowness of the JML compiler if there is no separate

compilation for referenced files.

Figure 2.6: Relative-slowness of jmlc due to separate compilation

We can easily compute the slowness of the current JML compiler due to separate com-

pilation of referenced files. It is given by:

rsspcm
avg =

∑15
k=1 rsspcm

k

15
=

∑n
k=1

tkspcm

tkjavac

15
≈ 4.0 (2.2)

2.4.2 JML Compiler Built on Multi-Java Compiler

The current JML compiler has been built on Multi-Java [CMLC06], an open source compiler

for Java. It would be interesting to see how much slower is Multi-Java with respect to the

javac compiler. This is important because we require to know what is the actual relative-
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slowness of JML w.r.t. javac. Figure 2.7(a) shows the relative slowness of Multi-Java to

javac compiler.

Since JML is built upon Multi-Java we can write a very simple equation:

tJML = tMJ + tJML′ (2.3)

where JML′ is the time taken to compile the source code due to the added components or

code of JML. Now dividing equation 2.3 with tjavac(> 0), we get:

tJML

tjavac

=
tMJ

tjavac

+
tJML′

tjavac

(2.4)

From this equation we can plot a graph as shown in Figure 2.7(b) where Actual-slowness

and Effective-slowness is denoted by tJML

tjavac
,

tJML′
tjavac

respectively.

We can easily compute the slowness of the current JML compiler incurred from Multi-

Java from 2.4. It is given by:

rsmj
avg ≈ 1.5 (2.5)

2.4.3 Double-round Architecture

The major bottleneck for this architecture is the double-round compilation undergone by

the original source code. It is a well-known fact that in a compilation phase, most time

is spent in the scanning phase since this requires interacting with a slower device like the

hard-disk (see Figure 2.8). In this architecture, scanning and parsing is done twice for the

original code which slows down the performance.

Figure 2.9 shows the effective slowness of the JML compiler due to the double-round

strategy. It can be easily observed that the total time taken to compile in a JML compiler

is still much slower than a javac compiler. This can be attributed to the fact that a

JML compiler does more work than a Java compiler. In addition to this, a huge chunk of

instrumented code is also added to the original code. However between Figures 2.3 and 2.9,

the total time in case of only double-round is much faster than when separate compilation

of referenced files is not present.
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Similarly, we compute the slowness of the current JML compiler incurred due to double-

round strategy. It is given by:

rsdbl
avg ≈ 2.5 (2.6)

From equations 2.1, 2.2, 2.5 and 2.6 we observe that:

rstotal
jml = rsrcrsv

jml + rsmj
jml + rsdbl

jml ≈ 8.5 (2.7)

2.5 Summary

In this chapter I discussed in detail the underlying architecture of the current JML compiler,

jmlc. I also explained the problem of the current compiler. The problem was shown to have

several reasons: separate compilation for referenced files, double-round, JML compiler does

more work than a Java compiler, etc. To evaluate and gain more understanding of these

factors, I conducted several experiments whose results has been discussed here. The jmlc

tool was shown to use a double-round strategy for generating RAC code. This affects the

performance of the JML compiler, as parsing is one of the most costly tasks in compilation.
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(a) Relative slowness of Multi-Java w.r.t. javac

(b) Effective slowness of JML w.r.t. javac

Figure 2.7: Relative-slowness of jmlc
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Figure 2.8: Distribution of compilation time for different phases

Figure 2.9: Relative-slowness of the jmlc tool due to double-round compared to javac
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Chapter 3

Incremental Compilation Using AST

Merging

In this chapter, I propose an incremental compilation using AST merging as a solution

to the problem mentioned in the previous chapter. I explain in this chapter incremental

compilation and AST merging in details, giving the outline of the general approach and

showing how this approach can be tailored to JML on the Eclipse platform.

3.1 Approach

There are several approaches that can be used to translate assertions into executable code.

Some of them are:

• One of the most popular approaches for translating assertions is preprocessing [BS03].

In this approach, the assertions are preprocessed which produces source code that

contains both original and runtime assertion checking code.

• Another approach for translation is the compilation-based approach. This approach

is used when assertions have built-in programming language features such that they

can be directly translated by the native compiler.

• The third variation is the byte-code manipulation or weaving approach. This ap-

proach is limited in scope since it can be used only for languages based on virtual

machines. The assertion checking code is embedded directly into the machine’s byte-

code [BH02].
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In our approach, we use compiler based technique for generating JML specific code to

check assertions at runtime. This approach is very similar to the approach outlined in

[CL02]. It works on the same principle as that of the double-round architecture; that is, it

consists of two compilation passes. Unlike the double-round architecture, in this technique

only the JML specific code is sent to the second compilation pass. The steps involved in

code generation using AST merging technique are illustrated in Figure 3.1. In the figure,

steps 1–2 occur in the first compilation pass and the rest in second. In the first compilation

pass, the original source code is parsed and type-checked. In this step, the assertions are

also parsed and type-checked. This is shown in the figure where the input to this step is

the source code and the output is a type-checked AST. For generating JML RAC code,

type-checked information of the original AST (source code) is required. This is because,

without knowing the type of a JML expression it is impossible to generate RAC code that

is type safe [CL02]. With the type-checked information, JML RAC code (in source code

format) is generated. Unlike in the double-round architecture, only JML RAC code is

scanned and parsed which results in an untype-checked AST. This untype-checked AST is

further type-checked and resolved as shown in step 4 of the figure. We thus now have two

AST’s, the original AST containing the original source code information (from the previous

pass) and the second AST that contains only JML code information. A key component

in this technique is the AST merging mechanism. The two AST’s are then merged into

one single AST containing both the original and JML code. This is shown in step 5 of the

figure. On successful merging, the resulting AST is type-checked and is used for byte-code

generation. This ends the second pass of compilation and also concludes the compilation

path for generating byte-code to support JML specifications.

The steps involved to implement this technique can be summarized as:

1. In the first pass, parsing and type-checking the original source code, including JML

annotations, is done.

2. Using this type-checked AST, JML RAC code is generated (in source code format).
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Figure 3.1: General Approach for generating RAC code

3. The JML RAC code is parsed. Parsing the JML code creates an initial AST.

4. This un-checked AST (JML AST) is type-checked and resolved.

5. The JML AST and the original AST are then merged together into a single AST.

6. The resulting merged AST is sent to code generation.

Before, I explain the AST merging technique in detail, let me explain the characteristics

of the JML AST.

3.1.1 Characteristics of JML AST

The characteristics of a JML AST are discussed in this section, including compilation unit

declaration, type declaration and method declaration.

A compilation unit consists of a package statement, import statements, and type dec-

larations. In the JML translation approach, the package declaration remains the same

between the ASTs. The import statements and type declarations may differ between the

ASTs. The JML AST may contain either less, equal or more types than in the original

AST. It may contain fewer types when the original AST contains types like enum that are
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not implementable by the JML compiler. The JML AST can contain more type decla-

rations if the original AST contains model types that needs to be translated to concrete

types.

A type declaration consists of field declarations, super types (super classes and super

interfaces), member types, and method declarations including constructor declarations.

Usually the number of field and method declarations differ between the ASTs. The member

type declarations ∗ differ in cases when the enclosing type of the member type is an interface

and is implementable, or the member type is a model type. In super types, the declaration

of super classes remain the same, however super interfaces may change between the ASTs.

The JML compiler uses a wrapper-based approach for generating RAC code for type-

and method-level specifications. In general, for every method present in the original AST,

say ME1, the JML compiler generates four more instrumented methods, namely, MEpre1X ,

MEpst1X , MExpst1X , ME in1X where the subscripts represent pre, post, xpost, and internal

methods for the original method ME1 in type X (see Figure 3.2). These methods are gen-

erated by the JML compiler to support method specifications. The merged AST contains

all the five methods (four from JML AST and one from the original AST) merged in a

special manner (which is explained further in the following subsections.) The merged AST

contains other methods that are generated to support type specifications. It is also possible

that for a particular type even if the original AST contains an empty type declaration, the

corresponding JML AST may contain methods, fields, and even member types.

Table 3.1 enlists all the different symbols used in this algorithm with their associated

meanings.

In addition, JML uses Hoare-style assertions for specifying pre- and post-condition.

In addition to this, it can also specify type invariants, inline constraints, and abstract

specifications using ghost and model keywords. The JML compiler uses both strategies of

code instrumentation, inline and wrapper approach. Figure 3.2 shows a sample snippet of

the JML generated code for the code listed in Figure 1.1. In this code, lines 1–12 are the

∗also known as inner types
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Table 3.1: Symbols and their meaning

Symbol Meaning

OT Original AST (AST version of the original source code)
JT JML AST (AST version of the JML-specific code)
MT Merged AST (AST version of the merged code)
*.name Fully qualified name of the associated node of an AST
*.T Type declarations of the associated AST
*.I Import declarations of the associated AST
*.F Field declarations of the associated AST
*.ST Super type declarations of the associated AST
*.MT Member type declarations of the associated AST
*.ME Method declarations of the associated AST
ME .SIG Method signature that includes visibility modifier,

return type, name, argument and throws clause for that method
ME .SIGR ME .SIG with “internal” removed from the name of the method, if present.
Mpre1X pre-condition checking method for M1 in type X
Mpst1X normal post-condition checking method for M1 in type X
Min1X internal method for M1 in type X
Mxpst1X exception post-condition checking method for M1 in type X

different wrapper methods that were generated to check method and type specifications.

Every specification method is named in a predefined manner; containing three parts each

delimited by ‘$’. These sub parts represent the type of specification method (i.e., whether

it is to check pre-condition, post-condition, etc.), the method for which the specifications

is written (in our case it is the withdraw method), followed by the name of the type in

which the method is present (class BankAccount in this case). Additionally, the original

method body is replaced by delegation calls to different specification methods as shown in

the diagram between lines 17–26. And the original method body itself is placed inside a

new method (generated by the JML compiler) having the same signature as that of the

withdraw method; the method name is prefixed by the name internal. This is shown in

lines 13–16 of Figure 3.2.
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1 /** Check pre -condition for method withdraw */

2 private boolean checkPre$withdraw$BankAccount (){

3 boolean pass = false;

4 // check the condition and return true or false accordingly

5 return pass;

6 }

7 /** Check post -condition for method withdraw */

8 private void checkPost$withdraw$BankAccount (){

9 // check the condition and return normally or throw exception

10 }

11 /** Check other conditions also like invariants , history

12 constraints , exceptional post conditions */

13 /** Original code goes here */

14 private int internal$withdraw$BankAccount () {

15 // Original code + assertion checking code for inline assertions

16 }

17 /** Original function from where all delegation happens */

18 public int withdraw () {

19 int result = 0;

20 // delegate calls to constraint checking methods

21 checkPre$withdraw$BankAccount ();

22 try {

23 internal$withdraw$BankAccount (); checkPost$withdraw$BankAccount ();

24 } catch(Exception e) { ... }

25 return result;

26 }

Figure 3.2: Wrapper-based instrumented code for validating assertions

3.1.2 AST Merging Algorithm

A key component of our approach is AST merging. This section explains the algorithm

in detail. The entire merging mechanism can be subdivided into 3 major levels of merg-
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ing: compilation unit level merging, type level merging, and method level merging. The

following subsections discuss the approach for merging the ASTs at each level.

Compilation Unit Level Merging

Figure 3.3: Compilation unit level merging

The compilation unit declaration is shown in Figure 3.3 where package statements,

import statements, and type declarations are marked as P, I, and T, respectively. The

general merging mechanism is illustrated here. Let us assume that type declarations and

import declarations for the original AST ranges from {T1 to Tt} and {I1 to Ii} respectively

and JML AST from {T ′
1 to T ′

t′} and {I ′1 to I ′i′}. The merged AST would then contain type

declarations that are in JML AST and remaining types that are declared in original AST

but not in JML AST. This happens when the original AST contains types that are not

implementable by the JML compiler. Conversely, for import declarations the merged AST
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would contain declarations from the original AST and remaining import declarations in

JML AST. This can be represented as follows:

OT.T = {T1, T2, ... ,Tt}
JT.T = {T ′

1, T ′
2, ... ,T ′

t′}
MT.T = T ′ ∪ T = {Tk | Tk ∈ T ′ or Tk ∈ T}.
OT.I = {I1, I2, ... ,Ii}
JT.I = {I ′1, I ′2, ... ,I ′i′}
MT.I = I ∪ I ′ = {Ik | Ik ∈ I or Ik ∈ I ′}.

Figure 3.3 illustrates the general algorithm in the upper-half of the diagram. The figure

shows the merging mechanism using the general form of ASTs. Import statements from

the original AST are first copied into the merged AST and then any other import declara-

tions in JML AST that are not present in original AST, are appended. For merging type

declarations it is reverse: JML AST type declarations are copied into the merged AST first

and then any other types that are not present in JML AST but present in the original

AST are appended. The bottom half of the figure shows a concrete example and how this

merging is done. The original AST is the AST version of the code written in Figure 1.1

and the JML AST is the JML version for the same code. The original AST contains no

package or import statements but contains three types namely BankAccount, Account, and

TransactionException. The generated JML AST on the other hand contains no package

statement, the same number of type declarations, and an additional import declaration

than that of the original AST. The merged AST contains this import statement as can be

seen from the figure.

Type Level Merging

Type declaration containing field declarations, super types, member type declarations and

methods are shown in Figure 3.4 which are marked as F, ST, MT, and M, respectively. The
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Figure 3.4: Type-level merging

general merging mechanism is illustrated here. Let us assume that the original AST has

several types T = {T1, ... ,Tt} and each type contains field declarations F = {F1, ... ,Ff},
super types ST , member types MT = {M1, ... ,Mmt}† and method declarations ME =

{ME1, ... ,MEm}. In case of JML AST, they are represented as T ′ and each type contains

F ′, ST ′, MT ′ and ME ′. These are shown in the upper portion of Figure 3.4. During JML

code generation, several fields may be instrumented for its purpose. These fields must be

merged into the final AST. Hence, the merged AST contains both original AST and JML

AST’s field declarations. This is shown in the figure where all the fields from the RAC is

appended to the original AST. In case of super types and member types, it is possible for

JML to have more super types, and member types than that of the original. Moreover,

it is also possible that one of the member types is not implementable by JML like enums

and annotation type. The manner in which member type declarations are merged is by

appending the non-overlapping types between the original AST and JML AST (i.e., types

that are declared in the original AST but not in JML AST) to JML AST’s member type

declarations. For merging methods between original and JML AST, special considerations

†Each type in MT is again another type declaration
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are made (which is explained later in the following subsection). However, at the top level,

the merged methods should contain all the methods of original and JML. The merging

mechanism at the type level is represented as:

MT.F = F ∪ F ′ = {Fk | Fk ∈ F or Fk ∈ F ′}.
MT.ST = {ST ′

1, ST ′
2, ... ,ST ′

st′}
MT.MT = MT ′ ∪ MT = {MTk | MTk ∈ MT ′ or MTk ∈ MT }.
MT.ME = ME ∪ ME ′ = {MEk | MEk ∈ ME or MEk ∈ ME ′}.

Figure 3.3 illustrates this general scheme in the upper-half of the diagram. The figure

shows the merging mechanism using the general form of ASTs. Field declarations from

both ASTs are copied into the merged AST, super type declarations from only JML AST

are copied into the merged AST. Member type declarations of JML AST are first copied

and then any non-overlapping types from original AST are appended to the merged AST.

The bottom half of the figure shows a concrete example and how this merging is done.

The original AST is the AST version of the code written in Figure 1.1 and the JML AST

is the JML version for the same code. The original AST contains three types of which

one is an interface. In the original AST, as shown in the figure, BankAccount contains

no super classes, one super interface, one field declaration and one method declaration

and no member types. However, in JML AST, it contains two super interfaces, five field

declarations, and 29 method declarations. Using the merging mechanism discussed above,

the merged AST contains no super classes, two super interfaces, six field declarations

(one from original AST and the rest from JML AST), and 30 method declarations. For

type Account which is an interface, even though the original AST contains no member

type declarations, the JML AST and hence the merged AST contains one member type

declaration. This member type is required to be generated by JML to make the interface

Account implementable since an interface in Java is not implementable. This is required

because an interface may contain specifications that are to be satisfied by the runtime
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checker, in such a case the JML compiler adopts a strategy by creating a concrete class

that extends JMLSurrogate (a special class in the jml runtime package) and implements

the corresponding interface and all specifications are checked in this inner class.

Method Level Merging

Figure 3.5: Method level merging

Figure 3.5 shows the merging mechanism, where all the five methods are appended to

the merged AST and the method bodies between the internal method generated by JML

ME in1X and the original method ME1 are swapped (see Section 3.2.2). Using pattern

matching, we identify those methods in JML which have the same method name as in

original AST prefixed by the pattern internal (see Figure 1.1). On correct identification,

we swap the method bodies between the JML AST with that of the original AST. This is
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in conformance with the wrapper-based approach where the original method is replaced by

delegation calls and the original method body itself is placed inside a new method. The

swapping of method bodies is required because the calls to different specification methods

is instrumented inside “internal” method rather than the original method and vice-versa.

they This is further explained in Algorithm 1. The merging mechanism at the method level

is represented as:

OT.ME = {ME1, ME2, ... ,MEm }
JT.ME = {ME ′

1, ME ′
2, ... ,ME ′

m′ } where for each i in MEi

there are four methods in ME ′ (ME ′
pre1, ME ′

pst1, ME ′
xpst1, ME ′

in1)

and there are other methods in ME′ to support type specifications

MT.ME = ME ∪ ME ′ = {ME1, ME2, ..., MEm, ME ′
1, ... ,ME ′

m′}
where the method bodies of ME1 and ME ′

in1 are swapped.

Figure 3.5 illustrates this general scheme in the upper-half of the diagram. The figure shows

the merging mechanism using the general form of ASTs. Method declarations from the JML

AST and the original AST are copied into the merged AST, where for every method MEi

in the original AST its body is swapped with that of ME ′
in1. The bottom half of the figure

shows a concrete example and how this merging is done. The original AST is the AST

version of the code written in Figure 1.1 and the JML AST is the JML version for the

same code. The original AST contains a single method for type BankAccount. In the JML

AST it contains 29 method declarations where some of them has been shown in the figure.

The first two methods namely checkInv$static$ and checkInv$instance$BankAccount

are methods for supporting type specifications. The other methods shown in the figure are

to support the method specification of the withdraw method. The merged AST as shown

in the figure contains 30 method declarations where the method bodies between withdraw

and internal$withdraw has been swapped.

Algorithms 1 and 2 gives the general steps to merge two ASTs namely the original AST,
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parsed and type-checked from the source code, and the JML AST generated by the JML

compiler from the source code.

Algorithm 1 Merge OT with JT

Input: OT and JT

Output: MT

MergeASTs(OT , JT )

1: MT.P = OT.P

2: MT.I = OT.I ∪ JT.I

3: for all sT ∈ OT.T and cT ∈ JT.T such that sT.name = cT.name do

4: Merge type-level constructs that includes fields, super types, member types to cT.

5: MergeMethods(sT , cT )

6: end for

7: MT.T = JT.T ∪OT.T

Algorithm 2 Merging Methods of JT and OT

Input: OT and JT

Output: MT

MergeMethods(OT , JT )

1: for all oM ∈ OT.ME and rM ∈ JT.ME such that oM.SIG = rM.SIGR do

2: if rM.SIG contains ‘internal’ then

3: Swap oM.S and rM.S

4: end if

5: end for

6: MT.ME = JT.ME ∪OT.ME
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3.2 Application: A JML Compiler on the Eclipse

Platform

In this section, we discuss the motivations behind developing a JML compiler on the Eclipse

platform. We also discuss the necessity to alter the general approach to our specific need

due to the constraints set by the Eclipse framework and how we make use of our proposed

approach to build a JML compiler on Eclipse platform. In the following sub-section, we

outline the reasons for selecting Eclipse as the base compiler onto which a JML compiler is

built. The Eclipse framework presents certain logistic and architectural constraints which

required us to slightly change our approach. The following sections discuss the changes in

the approach, the reasons for it and the implementation details.

3.2.1 Why Build JML on the Eclipse Platform?

The JML community is targeting mainstream industrial software developers as the key

end users. Since JML is essentially a superset of Java, most JML tools will require, at

a minimum, the capabilities of a Java compiler front end. Some tools (e.g., the RAC)

would benefit from compiler back-end support as well. One of the important challenges

faced by the JML community is keeping up with the accelerated pace of the evolution of

Java. As researchers of JML community, we get little or no reward for developing and/or

maintaining basic support for Java. While such support is essential, it is also very labor

intensive. Hence, an ideal solution would be to extend a Java compiler, already integrated

within a modern IDE, whose maintenance is assured by a developer base outside of the

JML research community. If the extension points can be judiciously chosen and kept to a

minimum then the extra effort caused by developing on top of a rapidly moving base can be

minimized. Implementing support for JML as extensions to the base support for Java so as

to minimize the integration effort required when new versions of the IDE are released is an

important criteria for our effort. Chalin, James, and Karabotsos describes the importance
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of this problem and discusses a possible solution of building front-end support for JML on

top of the Eclipse platform [CJK08b].

3.2.2 Challenges

The AST merging technique proposed in Section 3 has some implementation constraints.

Some of them are:

• JML uses the wrapper-based approach to develop the framework for validating asser-

tions at runtime. This means, several new specification methods are created wherein

individual specifications are checked, original method bodies are placed inside new

methods having the same signature to that of the original method (except they are

prefixed with internal), and the original method body is replaced by calls to differ-

ent specification methods. During JML code instrumentation these calls to different

specification checking methods are instrumented inside new methods that are prefixed

by the name internal. In the final version, these statements are embedded inside

the original method body (see Figure 3.2). Type-checking them inside a particular

method and using the type-checked code inside another method causes a violation

in the byte-code format. Since the method body was type-checked under a different

method it results in an inconsistent byte-code format. Hence they are merged before

type-checking and then they are type-checked. Figure 3.6 illustrates this fact. Four

methods are generated by the JML compiler for a single method in the original code.

One of the methods namely internal$m$X contains delegation code. For minimizing

code duplication, the delegation code are generated by the JML compiler inside the

internal method along with other specification methods. In the final version, as

shown in figure, the merged AST has method bodies of m and internal swapped.

Thus type-checking the code before merging results in incompatible byte-code.

• For inline assertions, the constraint checking code may have dependency with the

existing code inside the method body. For example in Figure 3.7, we have an inline
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Figure 3.6: Difference in source code between RAC and final version.

assertion //@ assert i > 0; where i is a local variable. In this case, the generated

JML code shown in the figure contains references to i. This is highlighted in the figure

inside a box. If type-checking is done only on the JML code, it would obviously give

a compilation error, i cannot be resolved, since i is not declared locally inside the

JML generated code. Further, having a field declaration with the same name i in the

same type, may complicate matters, as the local i would be wrongly type-checked to

the field i (since the local i is not present or visible inside JML code). One simplistic

approach to this problem would be to add a temporary variable in the JML code

(for i), however this may result in code duplication. Therefore we, merge the JML

code with the original code prior type-checking. In the figure, the generated JML

code does not contain any local declaration of i since it is already declared in the

original code. However, the final version of the code after merging contains both the

declaration of the the local variable and the assertion checking code.

• A major architectural problem in Eclipse is that it does not support incremental

compilation at type, at method or at statement levels. Most traditional compilers like
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Figure 3.7: Problem of type-checking the RAC code, in presence of inline assertions

the Eclipse Java compiler, assumes that the different phases like scanning, parsing,

resolving, and byte-code generation are visited once per compilation unit. This is

not the case for incremental compilation. Moreover, most incremental compilers like

the C# compiler of Microsoft Visual Studio R© provides some kind of temporary data

structure, like output_file_name.extension.incr to take advantage of incremental

compilation. The data structure stores information about the status of compilation:

its lookup tables, internal AST, and others. The Eclipse framework does not provide

these features. Hence incremental compilation is not possible in Eclipse at a level

lower than the compilation unit.

• The Eclipse framework is designed so that type-checking starts from the top level

construct, i.e., compilation unit. If a particular type is type-checked then it abandons

the type-checking of the specific type and moves onto the next. Eclipse uses the visitor

pattern to visit all the nodes. During type-checking, all the children of a particular

node are visited (type-checked) first and then the node itself is type-checked. On

successful completion, the node is marked type-checked by setting the AST bits to

type-checked. For better performance, children of a particular node are visited only

if the node is marked not type-checked. Thus if a compilation unit node is marked

type-checked then all the children of this node are not visited as it is assumed to be

43



type-checked. In JML, this strategy is not applicable since instrumented methods,

instrumented types, and instrumented statements are added onto existing type and

method declarations in the second pass. Thus even though if the top-level node

is type-checked (from the first pass), some of its children may not be type-checked

which would result in compiler error. Similar behavior is seen when it type-checks for

a method; the method body is visited only if the method header is not type-checked.

This is also true at the statement level.

3.2.3 Modified Approach on the Eclipse Platform

The changes to our modified approach as compared to the general approach are:

1. In the first pass parsing and type checking of original source code is done.

2. Using this type-checked AST, instrumented JML code is generated in source code

format, which is further saved in a temporary file.

3. The RAC code is parsed; parsing the JML code creates an initial AST.

4. This untype-checked AST (JML AST) is merged to the original, un-checked AST

(original-AST). Note that merging is done between untype-checked ASTs and not type-

checked ASTs as mentioned in the general approach.

5. Type-binding, type-checking, and flow-analysis are done on this merged AST. Note

that this is similar to the general approach except in the modified approach all the

nodes in the merged AST are visited.

6. The resulting AST is sent for code generation.

The Eclipse framework does not provide us with any API that we can take advantage

of for the incremental approach. The unit of increment in Eclipse is a compilation unit.

However, for the JML compiler the unit of increment is a sequence of Java statements. A
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sequence of instrumented Java statements cannot be simply parsed and type-checked and

then merged with the original AST in the Eclipse framework. This is because the Eclipse

framework does not contain APIs to support parsing and type-checking at the statement

level, a major reason for our inability to implement the general approach. Thus, we propose

an alternative solution. We merge the two AST’s before type-checking phase in the second

compilation pass. In our approach, we merge the two ASTs as not-type-checked objects

(even though of course the original AST was type-checked in the first pass) rather than

type-checked ones.

3.2.4 Implementation Details

Figure 3.8: Proposed architecture designed on the Eclipse Platform

Figure 3.8 shows how the JML compiler has been implemented on the Eclipse platform.

Scanning, diet and full parsing, type checking, flow analysis, and a major portion of code

generation form a part of the Eclipse JDT architecture (refer to Section A, for more detailed

explanation). Merger, store AST bits and a part of code generation are parts of the back-

end support for the JML compiler implementation. All the phases have two inputs as

45



shown in the diagram. They correspond to the first pass and second pass of compilation

respectively. The bottom arrows correspond to the first pass of compilation. In the first

pass, a Java file is scanned, parsed, type-checked and flow analyzed. Prior to type-checking,

the bit pattern for each AST node (see Section 1.1.5) that is present in the original AST

is stored in a hash map for later retrieval. In the code generation phase, the JML source

is generated from the original AST and only the JML code is sent for the second pass

of compilation. In the second pass, the input to the scanner is the JML code which is

scanned and parsed. Between parsing and type-checking, merging is done. The inputs to

the Merger phase, as shown in the figure, is the original AST that is type-checked from

the first pass and the JML AST that is not type-checked. Inside the merging phase two

things happen to bring the merged AST into a consistent state. First, the original AST is

converted from type-checked to untype-checked AST. This is done by reverting the current

AST bits with that of the bits prior to type-checking for the original AST. The next step

that follows, is merging the two ASTs. The merged AST is type-checked, flow analyzed

and code generated.

Storing and Retrieving of AST Bits

As discussed in Section 1.1.5, the AST bits act as a blue-print for all the information

contained in the AST node. To facilitate merging of untype-checked ASTs, the type-checked

original AST needs to be transformed into an untype-checked AST. This is required because

the bits corresponding to each node of the original AST signifies that the node has already

been type-checked. In such a case, the children for these nodes would not be visited. Under

normal conditions this always holds true. However, since the merged AST contain both

JML AST and original AST nodes, some of them would be type-checked and others not. To

force visiting all the nodes in the merged AST , retrieval of AST bits for the original AST

is done. This is done by visiting each of the AST nodes before type-checking phase in the

first pass, such that we collect the information of the bits of each AST node and save it in

a HashMap where the key is the AST visited and the value is the bit pattern corresponding
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Figure 3.9: Steps involved for generating RAC code

to the AST node. To implement this scheme, the visitor pattern was adopted, where every

AST was visited and the corresponding bit pattern was stored. This process as shown

in Figure 3.8 happens in the first pass prior to type-checking the original AST nodes. In

the second pass, while merging the original AST with the JML AST, all the nodes of
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the original AST are again visited. For every node visited, its current bit pattern (which

signifies that the node was type-checked) is now overwritten by the initial bit pattern (prior

to type-checking) which is stored in the hash table. Furthermore since type-checking on

a node results into two side-effects: the AST bit pattern being changed and the resolved

type being set; we also require to nullify the resolved type of the node. In the second pass,

while we visit each of the nodes to re-set the AST bit patterns, the corresponding resolved

type is also nullified since type-checking the same node twice may have problems.

Figure 3.9 illustrates the modified approach in a step-by-step fashion. Initially there is

a Java source code that is annotated with a JML specification. For simplicity, the Java

source code contains a single method void m(int i) having a simple JML pre-condition.

As a first step, this file is scanned and parsed into an AST. The figure gives a one-to-one

relationship between the code and the AST generated. The different nodes are shown

differently in the figure to represent the different Java models. This AST is further type-

checked. In the figure the type-checked nodes are shaded in gray. This AST is used to

generate the JML code in source code format. Top-levels constructs like the compilation

unit, type declarations are copied from the original AST. The source code is scanned and

parsed to generate JML AST. An important phase following this is AST merging. Inside

this phase, an important step occurs. The AST Nullifier that nullifies the resolved type

of the nodes as well as re-set the AST bit pattern is done. JML annotation nodes are

also nullified in this step. The statements between the the internal method IM1 and the

original method from the original AST M are swapped. The resultant AST is then further

type-checked and is forwarded to byte-code generation.

The overall approach towards incremental compilation on the Eclipse platform can be

outlined as follows:

1. In the first compilation pass, before type-checking and resolving, the bit pattern for

each AST node is stored.

2. The first compilation pass ends by generating JML RAC code and pretty-printing to
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a temporary file. This file contains only JML RAC code.

3. The second pass starts by scanning and parsing only JML RAC code. This results in

an AST.

4. The bit pattern for the original AST is restored back by visiting each of the original

nodes.

5. The two ASTs are then merged into one single AST.

6. This AST proceeds to the type-checking and resolving phase.

7. The type-checked AST then proceeds for the final byte-code generation phase and

completes the second compilation pass.

The Relationship between Incremental Compilation and AST Merging

Figure 3.10 shows how our proposed technique is related to incremental compilation‡ on

the Eclipse framework. The upper half of the figure shows the steps of manual addition,

deletion, and necessary edits on the original source code in a step-by-step fashion showing

the incremental changes necessary to convert the original code into JML-specific code. The

final version of the original code results in a edited code where some of the statements

are already type-checked and others are not. The ones that require type-checking are the

added or edited code. In the figure, steps 1 and 2 correspond to the deletion of method

specification, that is removing the JML annotation and adding necessary methods into the

source code for constraint checking purposes. In step 3 a new method namely internal$m

is created. In step 4, the inline annotation is removed and its corresponding source code is

written. As a final step for the method m, the method bodies between m and internal$m$

are swapped.

‡Incremental compilation at the method, statement level
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Figure 3.10: Comparison between proposed approach and incremental approach

The bottom half of the figure depicts our proposed technique showing how the compiler

generates and merges the code automatically in a similar fashion §. Steps 1 through 4 in

our approach is taken care by the JML compiler, where runtime assertion code is generated.

Step 5 and parts of step 4 are simulated in the automated merging process. The resultant

code is similar to that of the final version of the code shown in upper half of the figure.

However due to problems in the Eclipse framework, in order to type-check the method body,

we require to nullify the types and re-set AST bit pattern of the already type-checked code

(refer to Section 3.2.2). Hence, nullification is done which results in the final version where

§This technique is slightly different from our proposed approach where merging is done prior nullification.

In the original approach, nullification is done before merging.
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all the nodes are to be type-checked.

3.3 Related Work

3.3.1 Incremental Compilation

Most incremental compilers has been built on systems that provide data structures to store

intermediate results and tightly integrate with all the components. Fritzson [Fri83b] in

his paper demonstrated incremental compilation at the statement level. He also showed

[Fri83a] that to develop such a system extra information is required which is not the case

in a traditional batch compiler. Earley and Caizergues [EC72] presented an incremental

compiler for Algol and PL/I that make use of an internal data structure in order to do

incremental compilation. Crowe, et.al [CNHM85] in their paper titled, “On converting a

compiler into an incremental compiler”, showed that a global storage data structure and an

incremental parser is required to be built for an integrated programming environment. It is

interesting to note that in all the approaches stated above “extra” data structures have been

used to develop incremental compilers. In my approach, AST merging technique was used

to show the effectiveness of developing an incremental compiler on top of a batch compiler

without the help of any “special” data structures. Unlike a traditional incremental compiler,

whose final output is always up-to-date, in our case, the intermediate representation is

always kept up-to-date.

Incremental compilation techniques has been successfully used in developing interactive

environment. The earliest known effort was in developing Magpie, an interactive system for

Pascal which used incremental compilation to specify debugging actions in Pascal [SDB84]

[DMS84]. Recently incremental compilation techniques has been revived with the growing

popularity of integrated development environments (IDEs). Some of the popular ones are
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Visual Studio R© IDE¶, IntelliJ R© IDEA‖, Eclipse∗∗ which support incremental compilation

in some form or the other. Montana is another open, extensible integrated programming

environment for C++ that supports incremental compilation by using a persistent code

cache that serves as a central source of information for compiling, browsing, and debugging

[Kar98]. In this thesis, I show that it is possible to develop an incremental compiler that

is fully integrated with an IDE.

3.3.2 AST Merging

In Premkumar’s work [Dev92] and [HGM00] applications of AST merging has been suc-

cessfully implemented in source code analyzers and program analysis tools. More recently,

Angyal et.al [ALC07] showed abstract syntax tree (AST) differencing and merging tech-

niques were applied on model-driven software development. Here synchronization between

a platform independent model (PIM) and a platform specific model (PSM) were achieved

using three way AST merging. Rosenblum [Ros92] in his paper describes APP as a stan-

dard preprocessor pass of cc which uses limited capability of merging algorithm at the

source-code level. All of the above work focusses primarily on source code analysis instead

of compilation techniques. Most of the efforts in AST merging has been concentrated on

pre-processors or source code analyzers whose input is source code and output is also source

code. Since the output to these AST merging techniques was primarily source code, mu-

tating the nodes of the AST was easily possible. They use “lazy” AST merging approach

that fails to take care of “consistent” merging and stresses on pretty-printing only.

In this thesis I explore new directions by using AST merging technique during compila-

tion phase for byte code generation. My problem domain is extended beyond the standard

because unlike others who have used it to generate source code, my approach is based on

creating byte code. In addition to this problem extension we also adopt a method which

¶Visual Studio R© is a registered product of Microsoft Corporations
‖IntelliJ R© IDEA is a registered product of JetBrains
∗∗Eclipse is an open-source product
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is different from the “lazy” merging approach since our focus is on generating byte code

instead of source code. This is because the problem requires consistent mutation of the

AST nodes resulting in correct byte code format.

3.3.3 Runtime Assertion Checking

Multiple contract based Java systems exist that suport assertions. These include but are not

limited to ContractJava [FF01], iContract[Kra98a], Jass - Java with assertions [BFMW01]

and Jcontract [Par] that uses pre-processor techniques where they primarily use double-

round strategy for generating assertion checking code. A significant contribution of this

thesis involves developing a technique that can be used in such tools and pre-processors

leading to performance gains.

3.4 Summary

In this chapter I outlined a general approach to solve the problem of slow compilation

speed of the current JML compiler. I also tailored this approach to implement the JML

compiler on the Eclipse framework. Developing the compiler was not without challenges. I

required to make multiple changes in the general approach such that it can be implemented

in the Eclipse framework. I also established the relationship between AST merging and

incremental compilation; elaborating on how it can be built on top of a batch compiler.
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Chapter 4

Evaluation

In this chapter, I describe the evaluation strategy and its corresponding results for the

evaluation of our proposed architecture. Most of Levels 0 and 1 features enlisted in the

JML reference manual [LPC+06] have been implemented. The features that fall under

these levels are most commonly used in JML specifications. I briefly give the overview of

the test cases that were run to test the completeness of the compiler construction and also

the test cases to test the performance of the proposed approach. Also discussed in this

section are my other contributions in my thesis and how the current implementation solves

the problems of JML2.

4.1 Test Cases

To test whether the proposed approach is indeed a feasible solution and can be used to

compile sufficiently large and complicated real applications, we tested our compiler with

all the 35K test cases of the Eclipse compiler, together with almost 3K other test cases for

JML alone. Table 4.1 shows the break down of the test cases.

4.1.1 JML Test Cases

Several existing JML test cases were used to test the current framework of JML on the

Eclipse framework and some more new test cases were also written especially for the new

approach. Here we focus only on the backend implementation (which is the focus of this

thesis). About 2100 new Junit test cases were written to test the new framework. They

are packaged in jml4rac.RunRACTests. All of them are grouped into different features of
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Table 4.1: Distribution of test cases across top-level feature tests
Features to Test Packages Versions∗ Test cases

org.eclipse.jdt.core.tests.RunBuilderTests 1.3 195
Integration org.eclipse.jdt.core.tests.RunDOMTests 1.1 3111

org.eclipse.jdt.core.tests.RunFormatterTests 1.5 1623
org.eclipse.jdt.core.tests.RunCompilerTests 1.1 23346

Compiler org.eclipse.jdt.core.tests.RunModelTests 1.1 6138
JML support org.jmlspecs.eclipse.jdt.core.tests.RunJML4Tests 422 560
RAC support org.jmlspecs.eclipse.jdt.core.tests.jml4rac.RunRACTests 423 2072

org.jmlspecs.eclipse.jdt.core.tests.jml2rac.RunRACTests 401 501
JML Samples http://www.jmlspecs.org/samples 15
Benchmarks antlr, jython, jfreechart, xalan, fop, hsqldb 8

JML. Figure 4.1 shows the different features that were tested.

Figure 4.1: RAC Test classes grouped as per JML features

Amongst others test classes, an important test class is the ASTMergerTest which fo-

cusses on testing the new AST merging technique that was proposed in this thesis. This

class tests almost all the Java features with and without JML annotations to check whether

proper merging and correct code generation is possible using the proposed approach. An

illustrative example of an annonymous class is shown in Figure 4.2. By default, the Eclipse

Java compiler adds a synthetic method X() to every anonymous class declaration. Since
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this is a synthetic method † it does not result in any compilation error. The method X is

treated as a synthetic constructor by the compiler. However in the second pass, the method

X is interpreted as a simple method having no return type. This generates a compiler error

since only constructors have no return types. A possible solution that I suggest and im-

plement in this thesis is to have a nullifier visitor class that would visit every AST node to

nullify some important data structure which were generated in the first pass (see Section

3.2.4) such that the method X is removed.

Other test classes that tests some new features in JML that were not previously sup-

ported by the current JML compiler are GenericType Test, InnerClass Test,

ViolationReporting Test and some parts of Inline Test. All of them test the new

features added in this thesis, including supporting JML specifications for generic types,

specifications for nested classes, enhanced violation reporting mechanism and support for

inline specifications in member classes, quantified expressions in inline assertions and sup-

porting new Java constructs such as the enhanced for loop.

Figure 4.2: Why proper merging and nullifying must be done prior to code generation

†The compiler generates this code and is thus not required to be parsed or type-checked; it is assumed

to error-free.
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4.2 Performance Measure

Performance of a compiler is a measure of its compilation time, memory usage during

compilation, runtime speed and many others. Program correctness is also one of the most

important criteria for a compiler being built. In terms of JML, the compilation time is an

interesting problem. It is affecting users from using the compiler for any practical purposes

since it is inherently very slow than a Java compiler. In our evaluation strategy, we try to

measure the compilation time and the memory used for compiling Java classes annotated

with JML specifications. The runtime speed is not measured since it is not a focus for my

thesis.

To do this, Eclipse framework provides us with a tool to measure the performance. The

class CompilerStats.java contains a data-structure to measure the parse time, resolve

time, analyze time and generate time. We make use of this data-structure to measure our

compilation time performance. To measure program correctness, we plot graphs showing

the percentage of success to failure of our approach with that of the current JML compiler

across all test cases. The results obtained are discussed in the follow sections.

4.3 Test Results

This section discusses the different test experiments and their corresponding results that

were carried out on the two different compilers of JML, current and new.

4.3.1 Performance Testing

Section 2.3.5 discussed that the current JML compiler is very slow than a Java compiler

because of the nature of compilation in JML: separate compilation and double-round strat-

egy. To compare the performance between AST merging and double-round it is important

not to include the slowness due to separate compilation. The number of test cases that

were test run was about 3000. Due to space constraints, table 4.2 tabulates only the total
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Table 4.2: JML Test results
Approach Total time (secs) Average (ms)

Double-round (full) 179 6.5
AST merging (full) 127 4.6
Double-round (second pass) 125 4.55
AST merging (second pass) 76 2.75

and average time ‡ of the two approaches. It can be observed that on an average basis AST

merging technique is 142% faster than the double-round technique. The main reason for

this difference is because of the variations in total compilation times of the two approaches.

The main speedup occurs in the second pass of JML code generation that is 160% faster

in the former case.

JML Sample Specifications

The JML distribution contains several sample specification packages in order to test and

verify new JML tools for executability and completeness of the tools [Lea]. Each of these

samples are heavily annotated with JML specifications. For a detailed description of the

packages and their characteristics see Table 2.1. In Figure 4.3 the results of the raw compi-

lation time of AST merging approach, double-round approach, the current JML compiler

and javac are shown. In Figure 4.4 the graph shows the relative-slowness of the two ap-

proaches compared to javac. It can be noticed that in all cases, the proposed approach is

faster than the double-round by a factor of 1.4. This also shows that the proposed approach

is faster when tested against the JML test suite.

Benchmark tests on JML Compiler

To test the performance of the new JML compiler using AST merging and also to test

the program correctness of jml4c, the compiler was tested on some of the test suites of

the DaCapo benchmark. The DaCapo benchmark is a set of open-source client-side Java

‡The compilation time of the failing test cases were not included
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Figure 4.3: Compilation time of all approaches

benchmarks. The motivation behind testing the compiler against these benchmarks was to

re-assure that the compiler can be used in “real” applications. The following subset of the

DaCapo benchmark was tested:

1. antlr A parser generator and translator generator.

2. chart A graph plotting toolkit and pdf renderer.

3. fop An output-independent print formatter.

4. hsqldb An SQL relational database engine written in Java.

5. jython A python interpreter written in Java.

6. xalan An XSLT processor for transforming XML documents.

59



Figure 4.4: Relative slowness of AST merging and double-round approach to javac

The reasons for using these benchmarks over the SPEC-benchmark is because they are

open-source and their complexity is higher than those in SPEC-benchmark [BGH+06a]

[BGH+06b].

The results of running these benchmark on the Eclipse Java Compiler, jmlc and jml4c

has been tabulated in Table 4.3. Each benchmark is followed by a number that signifies

the number of packages for that benchmark e.g., antlr has 90 packages. The last two rows

tabulates the arithmetic mean and geometric mean of KLOC, number of class files and

compilation time of all the benchmark. Figure 4.5 shows the graph of the compilation time

of each of three compilers and 4.6 shows how jml4c and jmlc are compared with respect

to the Eclipse Java compiler. Figure 4.7 gives the characteristics of the benchmark in

terms of lines of code and class files generated. Note that the number of lines and class

files generated is different between the Eclipse compiler and jml4c. This is because jml4c

instruments runtime assertion code into the source code and adds an inner class for every
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interface.

From the table, it can computed that the speed-up of AST merging on double-round is

the following:

Sam =

∑6
k=1 tjmlc

k

6∑6
k=1 tjml4c

k

6

≈ 1.59 (4.1)

Sgm =

6

√∏6
k=1 tjmlc

k

6

√∏6
k=1 tjml4c

k

≈ 1.54 (4.2)

Figure 4.5: Compilation time of three compilers

Overhead of JML4c compared to the Eclipse Java Compiler

To study the overhead of the new JML compiler with respect to the Eclipse base compiler

we performed some tests. The same test cases that were used to test JML specifications

were used to test the overhead of JML4c. Before running the test cases, it was made sure
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Table 4.3: Benchmark results
DaCapo

Benchmark Compilers KLOC No. of class Files Compilation Time (in ms.)

antlr - 90
Eclipse Java Compiler 67.1 660 3531
JML4c 1002.3 722 11299
jmlc 1002.3 722 17302

chart - 65
Eclipse Java Compiler 304.3 1025 5346
JML4c 2142.2 1128 10827
jmlc 2142.2 1128 17107

xalan - 41
Eclipse Java Compiler 338.85 1202 6457
JML4c 1996.5 1268 18222
jmlc 1996.5 1268 29702

jython - 55
Eclipse Java Compiler 240.9 906 4641
JML4c 3808.3 941 16243
jmlc 3808.3 941 26313

hsqldb - 28
Eclipse Java Compiler 247.7 651 3453
JML4c 1582.2 702 9958
jmlc 1582.2 702 14224

fop - 51
Eclipse Java Compiler 237.9 660 9843
JML4c 2420.4 1939 14764
jmlc 2420.4 1939 21163

min
Eclipse Java Compiler 67.1 660 3453
JML4c 1002.3 702 9958
jmlc 1002.3 702 14224

max
Eclipse Java Compiler 338.85 1789 9843
JML4c 3808.3 1939 18222
jmlc 3808.3 1939 29702

arithmean
Eclipse Java Compiler 239.46 1038.83 5545.17
JML4c 2158.65 1116.67 13152.57
jmlc 2158.65 1116.67 20968.5

geomean
Eclipse Java Compiler 214.8 974.8 5175.9
JML4c 1992.2 1047.72 13213.9
jmlc 1992.2 1047.72 20283.5
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Figure 4.6: Slowness-factor of two approaches w.r.t. Eclipse Java Compiler

that the JML annotations were converted to comment lines. Figure 4.8 shows the overhead

of the new compiler w.r.t. the Eclipse Java compiler. On average, JML4c is 1.37 times

slower than the Eclipse Java compiler.

Overall compilation speed-up

To compare the overall performance speed-up of the new compiler, jml4c with respect to

jmlc, we tested them on two different sets of test cases. One set of test cases contained JML

annotations and the other set contained no such annotations. We tested the two compilers

using the test cases of the JML sample package: first with JML annotations enabled and

then by disabling them.

It can be observed from the Figure 4.10 that jml4c on average is about three times

faster than jmlc in presence of JML annotations and about 4.5 times faster when there is

no jml annotations.
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4.3.2 Testing jml4c with respect to hand-crafted code

Since runtime assertion checker instruments additional code into the original source code,

it is interesting to study the performance of the new JML compiler in comparison to

hand-crafted code. Here we study the performance difference, if any, between jml4c that

automates the generation of RAC code and javac. We feed hand-crafted code to the javac

compiler and compare the time difference, if any with jml4c. We use the JML sample

package as the test cases. On average, jml4c is 1.51 times slower than javac.

4.3.3 Performance Analysis

To further understand and analyze the test results obtained and to figure out any bottle-

necks of the proposed approach we performed another set of tests. In these tests we tried to

find how each Java language feature affect our proposed approach. We limited our feature

set to type declarations (class, interface, abstract class, inner class, local class, anonymous

class), method declarations, field declarations, inheritance (through interfaces and classes),

method body, JML specifications for methods and interfaces and certain advanced fea-

tures like ghost and model fields and model methods. Table 4.4 lists the proportion by

which each of these features affect the proposed approach. We may note that not only

do types, methods, and specifications affect compilation speed differently in case of JML

but also their different types affect a lot. Amongst the different types, a single class has

the highest contribution and a local class has the least. For methods, the length of the

body plays an important role; the higher the number more faster would it be for JML4c

compared to jmlc. Specifications at different levels do not change much since JML uses the

wrapper-based approach where more compilation time is used to build the framework i.e.,

the different specification based methods.
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Table 4.4: Java and JML features affecting JML4c
Feature

Delta-Time (in ms.)
∆T = tjml4c − tjavac

Class 20.3
Interface 14.0

Abstract class 17.2
Inner class 14.0
Local class 3.2
Field decls. 1.5

Inheritance in interface 3.5
Inheritance in class 3.4

Method decl. 10. 9
Method body 4.7
Method specs. 3.4
Type specs. 3.1
Inline specs. 2.4
Ghost field 3.1
Model field 3.2

Model method 1.6

4.3.4 Testing Compiler Correctness

Almost 40K test cases were run on both the current compiler and the new JML compiler

built on the Eclipse platform. The test results are shown in Figure 4.11 showing the

percentage of success across all the test cases. For getting a better understanding for the

failing test cases, they have been grouped into different feature sets. Figure 4.11(a) shows

the result of testing the Eclipse framework itself. It shows how successful we were on

building the JML compiler on Eclipse. The small number of failing test cases are due to

certain changes to the configuration and other supporting files. Figure 4.11(b) shows the

result of testing the new compiler alongwith the current JML compiler against all the test

cases of JML and Eclipse. It shows that the success percentage for JML2 in JML test cases

is higher than that of JML4c. The reason behind this is exemplified in Figure 4.11(c) and

4.11(d). Many of the failing test cases are due to test cases that contain level 2 or higher

features that are not supported by JML4c yet. Another important observation is that the
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percentage of success for number of known bugs is higher than JML2. The small number of

test cases which fails for levels 0 and 1 features has been further categorized and shown in

Figure 4.11(d) as sub-features that are supported or not supported. In summary, the new

compiler, JML4c is 99.46 % successful compared to 88.37 % of the current JML compiler.

4.4 Enhancement to the Existing JML Compiler

Apart from performance speed up, support for Java 5 features, several translation rules,

unsupported features and failing test cases were fixed in JML4c. In this section, I highlight

my contributions by discussing features of the JML compiler that were either added or

fixed.

4.4.1 Support for Java 5 features

No JML tool including the JML compiler supports the features that were introduced in Java

5. The most important ones are the introduction of generics and enhancedforloop. Since

most new code that is written these days contain generics, it is impossible for the current

JML compiler to compile these code. Hence, due to the inability to use JML there is a

reduction in user code base. In my thesis, the new JML compiler supports Java 5 features.

And claims that this would revive the lost user code base. However, JML specifications

itself do not yet support Java generics i.e., generics inside specifications.

Support for Non-implementable Types

There are certain types that are not implementable by the JML compiler. Assertions

written for these types are not checked at runtime. The types that fall under this category

are enum and annotation types. The current JML compiler, JML2 is not able to parse

these types. However, in our case (the JML compiler designed on the Eclipse platform)

compilation units containing such types are properly parsed and type-checked. However if

JML annotations are present for such types they are ignored i.e., they are not implemented.
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Table 4.5 shows sample programs that were run and their corresponding outputs.

Table 4.5: Sample programs and their outputs
Enum Type

JML2 Compiler
public enum DayOfWeek { jmlc -Q DayOfWeek.java

SUNDAY, MONDAY, TUESDAY, WEDNESDAY, Syntax error: unexpected token: enum
THURSDAY, FRIDAY, SATURDAY JML4c Compiler

} java -jar jml4rac.jar DayOfWeek.java

no problems

Annotation Type

JML2 Compiler
public @interface Worker { jmlc -Q Worker.java

int id(); Syntax error: unexpected token: public
String engineer() default "NA"; JML4c Compiler

} java -jar jml4rac.jar Worker.java

no problems

Support for enhanced for loop

In Java 5, a new form of the for loop was introduced. It is popularly known as

enhanced for loop. The current JML compiler does not support this form of writing for

loop. Moreover, the JML Reference Manual also does not have translation rules defined for

such statements and hence loop annotations for the enhanced for loop are ignored. In

my thesis, I define the translation rule for the enhanced for loop and also implemented

it which is shown in Table 4.6

Instrumented Code Is Java 5 Compatible

The instrumented code that is generated by the current JML compiler is not Java 5 com-

patible. Compiling the original code with the JML compiler results in several unnecessary

warnings. Most of these warnings comes from the fact that the instrumented code is not

Java 5 compatible. In the current implementation all of the instrumented code has been

properly translated such that it is compatible with Java 5.

67



Table 4.6: Translation of enhanced for statement
Original code Translated code Translated code

(T_1 is iterable) (T_1 is arrayType)

//@ maintaining I; { {

//@ decreasing V ; [L:] while (true) { boolean rac$f = true;

[L:] for (E_1: T_1) [[checkInvii]] T rac$jml = T_1;

S [[checkVarii]] T rac$incr = [[init_value]];

if (!(B)) { [L:] while (true) {

break; if (rac$f) {

} rac$f = false;

E_1 = rac$jml.next(); } else {

S rac$incr++;

} }

[[checkInvii]] [[checkInvii]]

} [[checkVarii]]

B ≡ rac$jml.hasNext() if (!(B)) {

break;

}

E_1 = rac$jml[rac$incr];

S

}

[[checkInvii]]

}

B ≡ rac$incr ¡ rac$jml.length()

4.4.2 More Features are supported in JML4c

This section discuss the several new features that has been supported in the new JML

compiler.

Support for Non-Executable JML Clauses

Every Java class compiled with the JML compiler contains not only its normal content (as

would be generated by, e.g., javac), but also an embedding of its specification and how to

verify it at runtime. Instrumentation code is generated on a per type, per method, per field,

and per assertion basis [CL02]. The first version of the JML compiler [CL02] attempted to

implement assertion semantics based on classical two-valued logic causing the instrumented
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code to be much larger than the source. In [CR08] the expression evaluation of the JML

compiler was redesigned. In the current JML compiler the evaluation of expressions became

quite straightforward.

However in the current JML compiler the expression evaluation scheme which was

redesigned in [CR08] had one serious flaw; possible assertion violations at times were unre-

ported. This was because as a side-effect of the new design, every sub-expression appearing

in JML specification were checked at compile-time whether it was executable or not. By

executability we mean, can RAC verify at runtime whether the assertions hold or not? If

the expression is not executable by the JML compiler (i.e., its value at runtime is unde-

fined) then the entire expression or clause was dropped and no code corresponding to the

expression was generated.

1 /*@ ensures \result * \result <= i &&

2 @ (* \result is approximately equal to square root of i *);

3 @*/

4 public double sqrt(int i) {

5 // purposely the method body is wrongly implemented

6 return i + 1;

7 }

The code-snippet shown above is a motivating example to show the problem of unre-

ported violation in the current JML compiler. Under the old semantics, any call to method

sqrt would result in JMLPostconditionError since for no value of i the post condition

holds. However this would result in a huge amount of JML specific code. In the current

JML compiler, since the right-hand side of the and expression of the JML ensures clause

is not executable, the entire clause is dropped and hence no violation is reported.

In my thesis, care has been taken such that all violations are reported (even in case of

non-executability) and the size of the translated code is also not increased. The approach

towards doing this is simple and intuitive. It is based on the concept that: If a JML clause

is not executable then the entire clause is not dropped; rather corresponding code is generated

that decides the outcome of the validation of the clause at runtime. Every non-executable ex-
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pression is replaced by JMLNonExecutableUtil.throwNonExecExceptionForXXX method

where XXX is the type of expression, i.e., boolean, byte, char, double, float, int, long,

short. If the expression’s type is reference type XXX is replaced by Object. The class

JMLNonExecutableUtil is a utility class and is placed inside the JML runtime package

along with other JML error classes. For example the translated code for the ensures

clause is:

...

try {

rac$b0 = ((rac$pre0 * rac$pre0 <= i) &&

(JMLNonExecutableUtil.throwNonExecExceptionForBoolean()));

} catch(JMLNonExecutableException rac$e$nonExec) {

rac$b0 = true;

} ...

A normal post-condition violation would be reported since the first sub-expression in

the and expression violates the post-condition.

JML Quantified Expressions in Inline Assertions

The current JML compiler does not support quantified expressions in inline assertions,

however JML4c supports it. In order to reuse the existing quantifier evaluation package

while implementing the direct expression evaluation approach, the output of the quantifier

translator is wrapped into an inner class that is used in the evaluation of the assertion.

Support for JML Specification for Inner Classes

A class defined within another class is called a nested class. There can be four different

types of nested classes in Java: A static inner class, a non-static inner class, local class

and anonymous class. The current JML compiler does not support specifications for any
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of the nested classes. However in jml4c, support for JML specifications for inner classes is

present. This makes the JML compiler more apt to catch a larger set of violations.

4.4.3 Implementation Problems in JML2

This section discusses some of the implementation problems that exist in jmlc.

Problem in ghost field

The code-snippet illustrated below contains two such examples. The code contains a class

named AlarmClock that contains three fields and some methods, one of which is setAlarm

method. This method checks if the parameter that is passed into this method is equal to

the alarmTime, then the ghost variable alarmRing is set as true and the method returns

a true value otherwise, false. The class contains a static invariant for the non-static field

alarmTime.

1 public class AlarmClock {

2 public int alarmTime = 0;

3 public int min = 0, hour = 0;

4 //@ public static invariant alarmTime == min *60 + hour *60*60;

5

6 //@ public ghost boolean alarmRing = false;

7 public static boolean setAlarm(int now) {

8 if (alarmTime == now) {

9 //@ set alarmRing = true;

10 return true;

11 }

12 //@ set alarmRing = false;

13 return false;

14 }

15 // ...

16 }

The code when compiled by the current JML compiler gives the following output:
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File "AlarmClock.java", line 4, character 41 error: In this static

context "this" is not accessible [JLS 15.7.2] File

"AlarmClock.java", line 9, character 27 error: In this static

context "this" is not accessible [JLS 15.7.2] File

"AlarmClock.java", line 12, character 27 error: In this static

context "this" is not accessible [JLS 15.7.2]

The problem with the current JML compiler is that proper translation rule does not

exist for translating non-static fields in static scope. The example shown here illustrates two

problems: non-static field accessed in static invariant and setting a non-static ghost field

inside a static method. These problems have been taken care of in the new implementation

of the JML compiler where proper rules exist for translating such types.

Problem in exception reporting

Another problem that exists in the current JML compiler is that if an exception is thrown

while executing a specification clause it is not thrown back to the client. An example of such

a problem is shown below. In this example, null is being passed to the method product.

The pre-condition for this method is that the length of the parameter a is positive. However

as can be seen from the code, the method count would throw a NullPointerException

which should be reported back to the client. However this is not done in case of the current

JML compiler.

1 public class Demo {

2

3 public static void main(String [] args){

4 new Demo (). product(null);

5 }

6

7 //@ requires count(a) > 0;

8 public long product(int[] a){

9 long product = 1;
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10 for (int i:a) {

11 product *= i;

12 }

13 return product;

14 }

15

16 public /*@ pure @*/ int count(int[] a){

17 return a.length;

18 }

19 }

Current JML Compiler New JML Compiler

jmlc -Q Demo.java java -jar jml4rac.jar Demo.java

jmlrac Demo java -cp ".:org.jmlspecs.jml4.rac.runtime" Demo

No Problems Exception in thread ”main” JMLEvaluationError:

Problem in Loop Annotations

In JML a loop statement can be annotated with one or more loop annotations. The code-

snippet shown below is an illustrative example of JML annotation. It contains a method

that returns the sum of all odd numbers contained in the variable a. This example has

two loop annotations for the while loop, one followed by the keyword maintaining and

another that follows the keyword decreasing. They are written above the loop itself. The

first loop annotation describes the range that the variable i can take and the second checks

whether the variable i is decreased by one after each iteration.

1 public class Sum {

2 public static long sumOfEvenArray(int[] a) {

3 long sum = 0; int i = a.length;

4 out:

5 /*@ maintaining -1 <= i && i <= a.length;

6 @ decreasing i;

7 @*/
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8 while (--i >= 0) {

9 if (a[i]%2 == 0)

10 continue out;

11 sum += a[i];

12 }

13 return sum;

14 }

15 }

Due to improper translation rules, the code when compiled by the current JML com-

piler results in a compilation error as shown in Table 4.7. In Java, a labeled statement

must precede the block that contains a labeled continue statement i.e., there should be no

statement between the labeled statement and block. However the current JML compiler

generates instrumented code that violates this feature. In this thesis, the translation rule

has been changed to take care of this problem.

Table 4.7: Compilation result of JML annotation with label statement

JML2 Compiler JML4c Compiler
jmlc -Q Sum.java java -jar jml4rac.jar Sum.java

Target of continue statement is not continuable no problems

In Java a loop statement can either be a for loop, while loop or a do-while loop.

The current JML compiler contains incorrect translation rules for translating do-while

loops that are annotated with JML annotations. Table 4.8 shows the translation rule

that exists for the do-while loop for the current JML compiler. It also shows the new

translation rule where statements S is embedded inside an if block. This small change

is necessary because if S is either a return statement, a throws clause, a break or

continue statement then the next few lines in the translated code becomes unreachable

issuing Statement is unreachable compiler error. This can easily be handled if we embed

statements S inside an if block with the condition set to true.

74



Table 4.8: Old and new translation rules for do-while loop
JML2 Translation rule New Translation rule

[[do S while (B)]] = [[do S while (B)]] =

{ {

<<varDecl>> <<varDecl>>

while (true) { while (true) {

<<checkInv>> <<checkInv>>

<<checkVar>> <<checkVar>>

S if (true) { S }

if (!(B)) { if (!(B)) {

break; break;

} }

} }

<<checkInv>> <<checkInv>>

} }

4.5 Summary

In this chapter, I showed my evaluation strategy and discussed the test results that were

obtained from the experiments. The test cases that were used to check the completeness

of my compiler consisted of 40K test cases of Eclipse, about 3K test cases for JML, JML

sample packages and also on real applications. I also used the test suites from the DaCapo

benchmark to test and benchmark the new compiler with the current JML compiler. In

this chapter I also discussed some of my other contributions in terms of adding support to

Java 5 features by using Eclipse as the base compiler. From the results, it can be concluded

that the proposed approach is faster by 160% than the old approach. Overall, I obtained

a compilation speed-up of three times than the previous JML compiler, jmlc. It was also

shown that jml4c is only 1.5 times slower than hand-crafted code implemented on javac.
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(a) Lines of code compiled by Eclipse and jml

(b) Number of class files generated by Eclipse and jml4c

Figure 4.7: Characteristics of benchmark on different compilers
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Figure 4.8: Overhead of JML4c w.r.t. Eclipse Java compiler

Figure 4.9: Compilation time of jmlc and jml4c with and without annotations

77



Figure 4.10: Compilation time of jmlc and javac in presence of handcrafted code

78



(a) Test results of integra-

tion testing

(b) Percentage of success of two ap-

proaches across the different sets of test

cases

(c) Failure tests grouped into feature

sets

(d) Percentage of failure tests of levels

0 and 1 that are supported by jml4c

Figure 4.11: Test results of the two approaches
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Chapter 5

Conclusion

5.1 Future Work

There are several natural extensions to the work presented in this thesis. They include

supporting more features of the JML language, improving performance and usability, es-

tablishing that the approach can be used for other specification languages and application

to other tools.

The JML compiler presented in this thesis does not yet support such JML features

as those that are in Level 2 and beyond such as refinement, model programs, and non-

functional properties. In JML, the behavior of a method is written in abstract code,

called model programs, in a notation similar to the specification statements. JML also

has several specification constructs to specify non-functional properties like time and space

requirements.

There are two distinct areas of future work: performance of the JML compiler and

using AST merging strategy in preprocessors. Unlike Java compilers, a JML compiler

parses the source files of all referenced types. This affects the performance of the JML

compiler, as parsing is one of the most costly tasks in compilation. This can be taken care

by encoding the signature information of JML specifications into byte-code or separate

symbol files and by eliminating parsing of referenced types. The JML compiler can also

be improved further by optimizing compilation passes, in particular, by abandoning the

double-round strategy altogether and generating runtime assertion code directly in byte-

code format. Some possible approaches would be to generate parse trees in the type-checked

form instead of source code.
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In this thesis, I focused my effort on investigating the problems and solution of the

slowness of the compilation time of the JML compiler, and use AST merging as a practical

and efficient way to merge between source codes. I also relied on the current JML compiler’s

code base to claim that the JML compiler is faithful to the semantics of JML specifications.

However, a formal treatment would be appreciated for the JML compiler to be viewed as

providing the correct semantics for JML.

5.2 Summary

The work reported in this thesis was motivated by the lack of practical use of the current

JML compiler due to its slowness, lack of integration with an IDE and inability to support

Java 5 generics. One can use BISLs to write detailed design documents of program modules

and such specifications allow one to clarify and critically evaluate the roles of program

modules. In addition, I strongly believe that BISLs can be used in daily programming

tasks, such as debugging and testing and when contained within an IDE, it can increase

user base and bring more productivity into the development process. I have presented in

my thesis, a working JML compiler that has been integrated with a popular IDE.

In this thesis, I have presented detailed approaches for writing the JML compiler on

the Eclipse platform. The JML compiler presented in this thesis represents a significant

advance over the state of the art in runtime assertion checking.

In Chapter 2, I defined the problem in the current JML compiler that I solved in my

thesis. The problem was shown to have several reasons: separate compilation for referenced

files, double-round, JML compiler does more work than a Java compiler, etc. In this chapter

I explained the architecture behind the current JML compiler especially the double-round

architecture.

In Chapter 3, I proposed a general approach towards solving this problem due to the

double-round approach. Then I showed how would this be implemented on the Eclipse

platform leading to a revised version of the general approach. Eclipse itself is not an
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incremental compiler, however it was showed in this chapter that it is possible to use

incremental compilation in my approach.

In Chapter 4, I showed my evaluation strategy and discussed the test results that were

obtained from the experiments. The test cases that were used to check the completeness

of my compiler consisted of 40K test cases of Eclipse, about 3K test cases for JML, JML

sample packages and also on real applications. I also used the test suites from the DaCapo

benchmark to test and benchmark the new compiler with the current JML compiler. In

this chapter I also discussed some of my other contributions in terms of adding support to

Java 5 features by using Eclipse as the base compiler. From the results, it can be concluded

that the proposed approach is faster by 160% than the old approach. Overall, I obtained

a compilation speed-up of 300% than the previous JML compiler, jmlc.

In this thesis I also explored new directions by using AST merging technique during

compilation phase for byte code generation. My problem domain is extended beyond the

standard because unlike others who have used it to generate source code, my approach is

based on creating byte code. In addition to this problem extension I also adopted a method

which is different from the “lazy” merging approach since my focus is on generating byte

code instead of source code. This is because the problem requires consistent mutation of

the AST nodes resulting in correct byte code format.

The successful implementation of the tool using AST merging also provides a partial

proof that the approach can be used as an effective framework for developing other tools

like preprocessors. I believe that the techniques and approaches developed in this thesis

namely AST merging are applicable to other object-oriented programming languages and

other tools.
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Appendix A

Compilation Phases Overview of the

Eclipse Platform

The main steps of the compilation process performed by JDT are illustrated in Figure A.1.

In the Eclipse JDT (and also in JML4), there are two types of parsing: in addition to a

standard full parse, there is a diet parse, which only gathers signature information and

ignores method bodies. When a set of JML annotated Java files is to be compiled, all

are diet parsed to create diet ASTs containing initial type information, and the resulting

type bindings are stored in the lookup environment. Then each compilation unit (CU) is

fully parsed. During the processing of each CU, types that are referenced but not yet in

the lookup environment must have type bindings created for them. This is done by first

searching for a binary (*.class) file or, if not found, the corresponding source (*.java) file

is searched. Bindings are created directly from a binary file, but a source file must be diet

parsed and added to the list to be processed. In both cases the bindings are added to the

lookup environment. Finally, flow analysis and code generation are performed.

The most important components of the JDT compilation phases are:

1. Scanning. Scanning of source code is done at a much later stage. When each CU is

diet parsed by invoking the DietParse method, it in turn calls the Scanner method

which actually scans the source code that is linked or bounded to the CU.

2. Parsing. The JDT’s parser is auto-generated from a grammar file (java.g) using the

Jikes Parser Generator (JikesPG) and a custom script that resides at

org.eclipse.dt.core/scripts. The grammar file, java.g, closely follows the Java
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language specification.

3. Type Checking. Type checking is performed by invoking the resolve method on a

compilation unit.

4. Flow Analysis. Flow analysis is performed by the analyseCode method on a compi-

lation unit.

Figure A.1: Interaction between command-line tools, GUI and the Eclipse Java compiler

Contrary to popular belief, the Eclipse framework has just one back-end compiler sup-

port. Here we discuss the overall interaction between the command-line tools, GUI and the
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compiler. Figure A.1 illustrates the interactivity between the different APIs. The command

line API (at an abstraction level) contains 3 methods. The main method is the starting

point of interaction with Eclipse via command prompt. It receives the arguments and in

turn invokes the compile method. This method decodes the command line arguments and

call the performCompilation method, which initializes the Batch.Compiler to its default

settings and passes the Compilation Units denoted as CUs to internalBeginToCompile

method, which is the starting point of the compiler API. In GUI case, on invoking the

Eclipse framework, several threads concurrently start, of which the run thread is invoked

from org.eclipse.core.internal.jobs.Worker.run method. This run thread in turn

calls the build method in the BuildManager class. This invokes the basicbuild method.

If the user now writes some code and builds or saves it, automatically builddeltas method

is invoked. This method tells the framework only those resources that have changed since

the last build need to be considered for compilation. The delta only tells you the file was

changed. If any delta is found, they are send to incrementalbuild method, which in turn

invokes incrementalcompiler method that identifies which CU is to be built. And then

sends this to the jdt.compiler class.
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Appendix B

Testing on the Eclipse Platform

B.1 Experimental Setup

All the experiments and the results that are tabulated for this thesis has been carried out on

a Dell Optiplex 760 Intel R© Core
TM

2 Duo CPU E7400 @ 2.8 GHz with 3.25 GB memory,

running Microsoft Windows XP Professional Version 2002 SP3. All the tests were executed

using Java hotspot Client VM version 1.6.0-13-b03.

The tests were timed using the system clock. The compilation time was computed as

the difference between the start and stop time.

B.2 Compilers Used

javac: javac is the standard compiler in Sun JDK and also serves as a reference implemen-

tation for the Java Programming Language. The version used was 1.6.0.05.

jmlc: jmlc is the standard compiler for Java Modeling Language. The version used was

JML2 version 5.6 RC4.

Eclipse Java Compiler: The Eclipse SDK that was used for testing purposes was version

number 3.4.1.

Jml4c: The new JML compiler that has been built on top of the Eclipse Java compiler

versioned 3.4.1 v-874.
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B.3 Testing the JML Compiler inside Eclipse

Unit testing is a labor-intensive activity, hence it is often not done as an integral part of

programming. However, it is a practical approach to increasing the correctness and quality

of software; for example, the Extreme Programming approach [Bec99] relies on frequent

unit testing. This section demonstrates how by using JML and the JUnit testing framework

we automated the writing of unit test oracles. Thus, we show that the compiler so designed

can be used seamlessly in Eclipse and can be used to compile “real” programs.

We used JUnit [JUn] a popular framework that automates some of the details of running

tests. It is a simple yet practical testing framework for Java classes; it encourages the close

integration of testing with development by allowing a test suite be built incrementally.

B.3.1 Testing Framework

The Eclipse framework supports JUnit testing framework. In essence, all the 35K test cases

for Java or Eclipse compiler have been written around the JUnit framework. The main

class from which all the different test classes inherit their methods is the

AbstractRegression Test class. However for our purposes, we created a new test class

that inherits the abstract class and overrides some of the methods, namely runConformTest.

Creating this new test class served several purposes, namely:

1. For testing purposes, we required to change some of the default compiler options ( at

times dynamically ∗).

2. Adding /org.eclipse.jdt.core/bin and /org.jmlspecs.annotation/bin to the

default class path.

3. We needed to override methods in the abstract class for testing the JML compiler

such that the test code was successfully compiled by the new JML compiler integrated

into Eclipse instead of using the default Eclipse compiler.

∗For checking and testing non-null type systems.
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4. Added a new method namely runConformTestThrowingError which helped to eval-

uate automatically that whether the thrown error is of the expected type.

5. Added new methods, compileAndRun, which made it easier for the users to write

similar test cases. For most test cases, the body for

public static void main(String args[]) remained the same. We factored this

out and made users only put the test code without the main method. This was

automatically added into the test code later during the execution. An example of

such a test case is shown in Figure B.1. In the figure, it is shown that the test

code is embedded as a parameter to the method compileAndRun. The method shown

contains three parameters: name of the class that is tested, the test code, method

body of the main function. Another variation is to have another parameter for the

method that gives the expected error that is to be thrown.

1 public void test_synchronized_statement (){

2 compileAndRun(

3 "X.java",

4 "public class X {\n" +

5 " public void m() {\n" +

6 " synchronized(this) {\n" +

7 " int i = -1;\n" +

8 " }\n" +

9 " }\n" +

10 "}\n",

11 "new X().m()");

12 }

Figure B.1: An example of a test case being tested using JUnit framework inside Eclipse
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B.3.2 Deciding Test Outcomes

A test case can be thought of a three-tuple containing the following form:

Q = (C, E ,A) where

Q = the test outcome,

C = the test code that is tested,

E = expected output or error,

A = actual output or error.

In our framework, a test is assumed to be successful if E = A; otherwise, the test is assumed

to have failed. More specifically, if the call to the test code terminates normally, i.e., no

exception is thrown, then the test succeeds. Similarly, if the call results in an exception

that is not an assertion violation error, then the test succeeds iff the error was expected.

With JUnit, however, such an exception must be caught by the test method, because all

exceptions are interpreted by the JUnit framework as signaling test failures; we required

to change this behavior. If the test code throws an assertion violation error, we require to

find whether the assertion violation error is of the expected error given by E .

B.3.3 Executing the Test Cases

A test suite namely RunJMLTestCases which runs all the test cases together was created.

The suite method is like a main method that is specialized to run tests. In order to run all

the test cases, it was enough to run this method; this would internally call and execute all

the test classes. Figure B.2 shows a screen shot of how a failure and a successful test run

looks. Notice that the failure trace shows why the test run failed.
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Figure B.2: Screenshot of a successful and a failed test run.
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Appendix C

Front-End support for JML on the

Eclipse Platform

In this chapter, I present very briefly the most important parts of the processes that are

involved for front-end support for JML on the Eclipse platform. This chapter explains the

key concepts behind grammar file, JikesPG, the parser and scanner source code. Most of

the front-end support towards JML has been largely carried out by Patrice Chalin and

his team [CJK08b] of Concordia University, Canada, Robby and his team from Kansas

University and others from the JML group.

C.1 Introduction

A very important principle in the development process is to make minimal changes to the

source code from Eclipse, to allow for convenient and easy merging between Eclipse and

our project. Currently almost all JML Level 0 and 1 features has been supported by the

front-end.

C.2 Grammar Files

The grammar file (java.g) is located in org.eclipse.jdt.core package. It is

used as an input to an LALR parser to generate the corresponding code. The

changes that are made to the grammar file are all contained in between lines

<jml-startid=‘‘jml.feature-name" /> and <jml-end id=‘‘jml.feature-name" />.
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The grammar file (java.g) has 7 different sections. They are:

1. Options - Contains options or flags that is used for parsing by the JikePG generator.

2. Define - Translation rule for common macros that are used through out the grammar

file like /.\$putCase

3. Terminals - Identifiers or keywords that are terminals.

4. Alias - Common aliases used for writing production rules.

5. Start - Points to the start from where the generator starts generating code for the

parser.

6. Rules - Production rules.

7. Names - Readable names that is used in error messages.

In the grammar, each production rule is followed by one or two additional lines. Ev-

ery production rule contains a semantic action and a readable name for a nontermi-

nal. The semantic actions are required for productions that uses ::= and looks like

/.\$putCaseconsumeXXX();\$break ./. The method body in consumeXXX() does the as-

sociated semantic action. And the second line looks like /:\$readableName XXX:/ which

is used for error messages. If the rule does not contain any semantic action, then -> is used

instead of ::=.

The new JML specific keywords are added to the java.g grammar file in the $Terminals

section.

C.3 JikesPG Generator

The parser files and resources are automatically generated using the Jikespg parser gen-

erator. For the JML front-end support, a slightly customized version of the JikesPG

is required. Here are the instructions for customizing it: Under src/common.h replace
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#define PRINT_LINE_SIZE 80 with #define PRINT_LINE_SIZE 300. More instructions

can be found at http://sourceforge.net/apps/trac/jmlspecs/wiki/JML4

The input to the parser generator is a grammar file that is LALR(1).

C.4 Parser File

Different types of stacks are maintained by the parser. The more important ones deal with

identifiers, expressions, and ASTs. There’s also an intStack for token positions. The

identifier stacks store particular names and keywords. It contains three parts which is used

to store the position of the name or keyword. An AST for an expression will be contained

inside an expression stack whereas the statement as a whole gets pushed into the AST

stack. Terminal symbols by convention are enclosed inside single quotes, like ‘requires’.

C.5 Scanner File

Keywords are added onto the static initializer for the Map JML_KEYWORD_TO_TOKEN_ID_MAP

such that the scanner is able to recognize these names as keywords and interpret them

differently. The keywords that are added in scanner, are also added in

Parser.consumeToken(int type).

C.6 Type Checker and Flow Analyser

Type checking is performed by invoking the resolve method on a compilation unit. Sim-

ilarly, flow analysis is performed by the analyseCode method.
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C.7 Merging External Specification

Between type checking and flow analysis, the compiler checks for external specification files

(e.g., *.jml files) corresponding to the file being compiled. If one is found, it is parsed

and any annotations are added to the corresponding declarations. Binary types (i.e., those

found in *.class files) whose specifications are needed are handled differently. For these,

the system searches for both a source and external specification file. Also, since binary

types do not have declarations, but only bindings, information cannot be easily attached to

them. For now, we store the specification information about fields and methods of binary

types in a cache that is managed by the JmlBinaryLookup class.
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Appendix D

Separate Compilation in the Current

JML Compiler

Here we discuss the problem of separate compilation of jmlc and a possible solution to it.

This is an important problem to solve as it amounts to almost 40% of the compilation time.

Java is a strongly-typed language, i.e., at compile-time it ensures that all assignments or

method calls are type-compatible. The necessity for referencing dependent files is to gather

type information. In Java, all type information is stored inside the byte-code. Hence if the

byte-code is current then necessary information can be gathered from the byte-code itself.

However in jmlc, this may or may not be possible. JML provides abstract specifications

i.e, to write specifications with abstract values instead of directly using Java variables and

data structures. There are several advantages of using abstract specifications. By using

abstract values, the specification does not have to be changed when the particular data

structure used in the program is changed [LG86] [Mey88] [Mey92] [Par79]. Also, it allows

the specification to be written even when there are no implementation data structures.

Abstract specifications in JML is written using the JML modifier model. JML allows

declaration of model methods, fields, and even types.

Figure D.1 shows a sample snippet using model fields. A model field can be thought

to be an abstraction of a set of concrete fields. A represents clause is used to specify

the connection between the concrete fields and such model fields. Since model fields are

specification-only fields, they are translated by the JML compiler into access methods

[CLSE05] [CL02]. Several scenarios are possible to reason about the behavior of jmlc’s

separate compilation. The java file I1 may be pre-compiled by javac and C1 is required to
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be compiled by JML compiler. In this case, since val1 is a model field, the information

is not present in the I1’s byte-code and hence it is to be re-compiled by JML compiler to

gather the type information of val1 from I1. More generally, since on compiling I1, the

type information of the model field val1 cannot be gathered directly from the byte-code,

it is always re-compiled.

1 // I1.java

2 public interface I1 {

3 //@ public model instance int val1;

4

5 //@ requires val1 > 0;

6 void m1();

7 }

8

9 // C1.java

10 public class C1 implements I1 {

11 public int x = 1;

12 //@ public represents val1 <- x;

13

14 //@ requires val1 < x + 5;

15 void m1() { /* ... */ }

16 }

Figure D.1: Example of model fields in specifications

D.1 A Possible Solution

For correct compilation the JML compiler requires to recompile the referenced source code.

Here we propose four variants which would solve the problem of separate compilation.

They are:
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Encoding type signature inside .class file by extending byte-code for-

mat

The .class file generated using jmlc does not contain any information about type signa-

ture. So an immediate solution to this problem is, encoding this type signature information

into the byte-code. In order to do so, we require to extend the existing byte-code format so

that this type-checked information can be encoded into it. However, we should also make

note that by extending the byte-code format, we would do no harm to the actual execution

of .class file. Since javac would ignore the extended format as it does for the annotations.

Writing type signature into a separate symbol file

Another alternative is to write the runtime specification into a separate symbol file. This

would free ourselves from extending the current byte-code format. In the type-checking

phase rather than checking source code in the class-path, we would require to find a

specific file. This file would be different for different source files. Hence we require a

naming convention, say the keyword symbol prefixed with the filename itself (for which

the type signature information is being generated) Eg. for a filename Simple.java we

would have Simple$Symbol.symb. Hence we would have two files being generated after the

compilation process instead of one: the original Simple.class and Simple$Symbol.symb.

Writing type signature into a separate Textual file

The third alternative is to write the runtime specification into a separate ascii or readable

formatted file (xml files can also be used). This may be similar to header files as in C or

C++. This has a distinct advantage over jmlc where the referenced source code is entirely

scanned, parsed, and type-checked to extract the type signature information. In this

alternative only the runtime information is to be scanned and parsed. They are in human

readable format. The xml format may be better in parsing the file to extract runtime

information. This method is slow compared to the other two proposed solutions because

in this case we require to recompile this ascii file. However this approach is far better than
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the existing approach.

Extracting type signature from access methods

Since every model field is translated into access methods having distinct method header

names, it may be possible to extract information of type signature from these access

methods. For example, a model field, i of type T defined in C has a method header

public T model$i$C. It may be noted that the method header contains the simple name

of the model field i. It is possible to access the field i as in C.i (if i is a static field), or by

using this.i. In either case, we may require to convert qualified names to simple names

and then search the corresponding method. A disadvantage of this approach is that it is

an ad-hoc procedure.
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